10.1071/CP21652

Crop & Pasture Science

Supplementary Material

Beneficial invertebrates of dairy pastures in south-eastern Australia

Evatt Chirgwin^{A,*}, Stuart Kemp^B, James L. Maino^A, Marielle Babineau^A, Isobel Roberts^A, Alana Govender^A, and Paul A. Umina^{A,C,*}

^ACesar Australia, 95 Albert Street, Brunswick, Vic. 3056, Australia.

^BPastureWise, 1485 Bamganie Road, Cargerie, Vic. 3334, Australia.

^cSchool of BioSciences, The University of Melbourne, Melbourne, Vic. 3010, Australia.

*Correspondence to: Evatt Chirgwin Cesar Australia, 95 Albert Street, Brunswick, Vic. 3056, Australia Email: echirgwin@cesaraustralia.com; Paul A. Umina School of BioSciences, The University of Melbourne, Melbourne, Vic. 3010, Australia Email: pumina@unimelb.edu.au

 Table S1. Analysis of bulk paddock samples and individual site samples undertaken by Nutrient

 Advantage[®], a NATA accredited laboratory. Methods follow those described in GE Rayment & DJ

 Lyons (2011) Soil Chemical Methods - Australasia, CSIRO Publishing. Melbourne, Australia.

Soil measurement	Units	Sample analysed
Electrical Conductivity using a Saturated Extract approximation (ECSE)	dS/m	Site
Phosphorus (Colwell)	mg/kg	Bulk
Phosphorus (Olsen)	mg/kg	Bulk
Potassium (Colwell) (available Potassium)	mg/kg	Bulk
Potassium (Amm. Acetate)	mg/kg	Bulk
Ammonium Nitrogen	mg/kg	Bulk
Nitrate Nitrogen	mg/kg	Bulk
Chloride	mg/kg	Bulk
Sulphur (KCI)	mg/kg	Bulk
Copper	mg/kg	Bulk
Iron	mg/kg	Bulk
Manganese	mg/kg	Bulk
Aluminium	mg/kg	Bulk
Zinc (DTPA)	mg/kg	Bulk
Boron (Hot CaCl2)	mg/kg	Bulk
Calcium, Magnesium, Potassium, Sodium (Ammonium Acetate)	cmol _c /kg	Bulk
Cation Exchange Capacity	cmol _c /kg	Bulk
Calcium/Magnesium ratio	ratio	Bulk
Exchangeable Sodium Percentage	%	Bulk
Aluminium % of Cations	%	Bulk
pH (1:5 water), pH (1:5 CaCl2)	ratio	Site
Electrical Conductivity (1:5 water)	dS/m	Site

Colour & Texture (Hand bolus)	categorical	Bulk
Organic Carbon	%	Site
Organic Matter	%	Bulk
%Coarse Sand, %Fine Sand, %Silt, %Clay (Hydrometer and wet sieve)	%	Site
Calculated soil texture (based on % fractions of sand, silt and clay)	categorical	Site

Table S2. List of invertebrate taxa where the functional role within dairy pasture systems could not be confidently assigned due to poor taxonomic resolution of these individuals and/or poor knowledge of their ecological function in pastures.

Taxa	Scientific name	Lowest taxonomic classification
Christmas beetle	Anoplognathus	Tribe
Dipluran	Diplura	Order
Other beetles	Coleoptera	Order
Other flies	Diptera	Order
Other Hemiptera	Hemiptera	Order
Other Heteroptera	Heteroptera	Sub Order
Other mites	Acari	Sub Class
Other Rutelinae	Rutelinae	Sub Family
Other Scarabaeidae	Scarabaeidae	Family
Phyllotocus beetle	Phyllotocus spp.	Genus

Table S3. Pest invertebrate taxa identified, and their average abundance (per m^2), within seven dairy regions of south-eastern Australia. FSA =Fleurieu Peninsula, ESA = eastern South Australia, GIP = Gippsland, NSW = south coast New South Wales, NVC = northern Victoria, SWVC = southwest Victoria, TAS = Tasmania.

Common name	Saiantifa nama		Region						
	Scientific name	FSA	ESA	GIP	NSW	NVC	SWVC	TAS	
Blackheaded cockchafer	Acrossidius tasmaniae	16.09	6.41	7.75	0.00	0.07	1.74	7.00	
Redheaded cockchafer	Adoryphorus coulonii	0.00	0.16	14.5	0.00	0.00	2.38	3.81	
Root aphid colony	Aphidoidea	13.75	5.94	35.06	3.36	0.13	13.37	35.81	
Auchenorrhyncha	Auchenorrhyncha	9.97	18.15	46.13	32.32	39.61	32.96	44.78	
Balaustium mite	Balaustium medicagoense	0.07	3.03	1.49	118.08	2.37	0.51	0.44	
Bryobia mite	Bryobia spp.	0.48	0.14	43.34	14.16	2.84	0.15	5.01	
Vineyard snail	Cernuella virgata	0.78	5.62	0.00	0.31	0.00	0.00	0.00	
Coccoidea	Coccoidea	20.79	33.45	30.68	11.63	2.71	13.07	15.12	
Pointed snail	Cochlicella acuta	0.00	0.78	0.00	0.00	0.00	0.06	0.00	
Other weevils	Curculionoidea	31.24	74.45	16.24	48.11	25.51	10.75	28.67	
Argentine scarab	Cyclocephala signaticollis	0.00	0.00	0.00	2.50	0.00	0.00	0.00	
Grey field slug	Deroceras reticulatum	0.90	2.64	1.35	0.49	0.32	1.60	3.21	
True wireworm	Elateridae	4.06	2.34	29.55	12.4	6.69	18.07	20.56	
European earwig	Forficula auricularia	3.13	0.00	0.06	0.00	0.07	0.06	0.06	
Other slugs	Gastropoda (slugs)	0.14	0.16	0.56	0.00	0.00	1.41	1.58	
Other snails	Gastropoda (snails)	29.34	58.61	16.24	2.70	0.20	44.37	44.17	
Redlegged earth mite	Halotydeus destructor	1167.99	1314.43	212.42	14.68	457.92	339.15	0.61	
African black beetle	Heteronychus arator	1.56	0.00	3.69	9.14	0.59	0.12	0.00	

Other Lepidoptera	Lepidoptera	9.31	8.01	12.27	15.71	5.68	18.38	21.49
Argentine stem weevil	Listronotus bonariensis	0.00	0.00	0.39	0.00	1.05	0.82	0.72
Mandalotus weevil	Mandalotus spp.	0.00	0.00	0.00	0.00	0.06	0.00	0.17
Other Melolonthinae	Melolonthinae	26.09	58.13	2.75	0.08	0.07	1.86	1.94
Black keeled slug	Milax gagates	0.63	4.11	0.25	0.07	0.20	2.62	2.00
Black field earwig	Nala lividipes	0.16	0.00	0.19	0.08	0.26	0.32	0.00
Armyworm	Noctuidae	0.31	0.16	0.92	7.93	0.06	0.47	0.18
Portuguese millipede	Ommatoiulus moreletii	1.09	0.63	0.06	0.00	0.07	0.35	0.06
Other Orthoptera	Orthoptera	0.16	0.00	1.83	0.39	0.06	0.28	0.92
Blue oat mite	Penthaleus spp.	366.03	245.03	231.69	285.45	231.14	279.4	41.97
Small pointed snail	Prietocella barbara	31.73	210.46	2.89	2.54	0.03	11.76	19.93
Mealy bug colony	Pseudococcidae	0.47	2.66	14.31	2.73	1.32	2.03	62.63
Bird cherry oat aphid	Rhopalosiphum padi	395.69	1568.28	502.34	509.82	909.33	351.78	587
Yellowheaded cockchafer	Sericesthis spp.	20.94	0.16	1.25	2.19	1.32	0.00	1.50
Lucerne flea	Sminthurus viridis	169.97	1632.43	1333.9	438.27	740.68	1082.01	3507.49
Spotted vegetable weevil	Steriphus diversipes	0.00	0.69	0.00	0.34	0.00	0.00	0.00
Black field cricket	Teleogryllus commodus	0.00	0.41	0.19	0.00	0.03	0.24	0.08
False wireworm	Tenebrionidae	5.81	1.56	3.15	1.44	4.48	2.88	1.85
Spider mite	Tetranychidae	0.00	0.00	0.11	0.41	0.23	0.00	0.00
White Italian snail	Theba pisana	0.00	4.06	0.00	0.00	0.00	0.06	0.00
Spotted alfalfa aphid	Therioaphis trifolii	0.00	1.10	47.03	26.23	55.9	2.61	31.57
Pest thrip	Thysanoptera	12.86	79.54	64.38	56.48	35.63	54.90	34.24

Figure S1. Distribution maps for natural enemy taxa from above- and below-ground samples. The size of the circles represents the average abundance of each taxon (calculated by summing the above- and below-ground abundances) at each paddock where they were found in our survey.

Figure S2. Distribution maps for other beneficial taxa from above- and below-ground samples. The size of the circles represents the average abundance of each taxon (calculated by summing the above- and below-ground abundances) at each paddock where they were found in our survey.

Figure S3. Percentage of paddocks where each natural enemy (plain text) and other beneficial (bold text) taxon was found to be present during our survey.

Figure S4. PCA biplot for the abundance of (a) natural enemies and (b) other beneficials. Each dot represents an individual sampling site; the closer two dots are in space, the more similar the natural

enemy or other beneficial taxa are. The colour of the dots indicates the corresponding region. Arrows show vectors based on the taxa with the greatest loadings on the two leading dimensions identified by the PCA. The angles between each arrow represent the correlation between taxa abundances at different sites (*i.e.*, angles of 0° , 90° and 180° between arrows would indicate correlations of 1, 0 and -1, respectively).

Figure S5. The predicted association of pest abundance with the abundances of (a) natural enemies and (b) other beneficials in spring (green colour) and autumn (blue colour) from mixed models that accounted for the effects of region and repeated measurements of sites over time. Note that pests are on a standardized scale (*i.e.*, 0 is the mean).

Figure S6. The predicted association of pest abundance with the diversity of (a) natural enemies and (b) other beneficials in spring (green) and autumn (blue). Lines are based on the marginal effects predicted from mixed models that accounted for the effects of region and repeated measurements of sites over time. Note that pests are on a standardized scale (*i.e.*, 0 is the mean).

Figure S7. The predicted association between the pest diversity with the diversity of (a) natural enemies and (b) other beneficials in spring (green) and autumn (blue). Lines are based on the marginal effects predicted from mixed models that accounted for the effects of region and repeated measurements of sites over time.