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Abstract. Late-maturity alpha-amylase (LMA) is akeyconcern forAustralia’swheat industrybecauseaffectedgrainmay
notmeet receival standards ormarket specifications, resulting in significant economic losses for producers and industry.The
risk of LMA incidence across Australia’s wheatbelt is not well understood; therefore, a predictive model was developed to
help to characterise likelyLMAincidence.Preliminarydevelopmentwork is presentedherebasedondiagnostic simulations
for estimating the likelihood of experiencing environmental conditions similar to a potential triggering criterion currently
used to phenotypewheat lines in a semi-controlled environment. Simulation inputs included crop phenology and long-term
weather data (1901–2016) for >1750 stations across Australia’s wheatbelt. Frequency estimates for the likelihood of target
conditions on a yearly basis were derived from scenarios using either: (i) weather-driven sowing dates each year and three
reference maturity types, mimicking traditional cropping practices; or (ii) monthly fixed sowing dates for each year.
Putative-risk ‘footprint’mapswere then generated at regional shire scale to highlight regions with a low (<33%), moderate
(33–66%) or high (>66%) likelihood of experiencing temperatures similar to a cool-shock regime occurring in the field.
Results suggested low risks forwheat regions acrossQueensland and relatively low risks formost regions acrossNewSouth
Wales, except for earlier planting with quick-maturing varieties. However, for fixed sowing dates of 1May and 1 June and
varyingmaturity types, the combined footprints for moderate-risk and high-risk categories ranged from 34% to 99% of the
broadwheat region for SouthAustralia, from12% to 97%forVictoria, and from9% to 59%forWesternAustralia.A further
research component aims to conduct a field validation to improve quantification of the range of LMA triggering conditions;
this would improve the predictive LMA framework and could assist industry with future decision-making based on a
quantifiable LMA field risk.
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wheat quality.
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Introduction

Late-maturity alpha-amylase (LMA) is a grain-quality defect of
major concern to Australia’s wheat industry. Its occurrence is
difficult to predict and incidence can result in a low falling
number, similar to the effect of pre-harvest sprouting (Mares
and Mrva 2014). A low falling number due to pre-harvest
sprouting has long been associated with poor end-product
quality and marketability (Bingham and Whitmore 1966;
Edwards et al. 1989). Although this may not be the case for
LMA (Newberry et al. 2018), the falling number test is unable to
distinguish LMA from pre-harvest sprouting, and irrespective, a

samplewith low falling number does notmeet receival standards
or market specifications. Consequently, a low falling number
measured at receival can result in price downgrades frommilling
quality to feedgrade at a substantialfinancial loss to theproducer.

Maintaining Australia’s reputation for shipping high-quality
milling grain is a critical industry issue, so the risks of LMA
incidence must be managed. Current receival standards are
guided by a strict classification system that requires LMA
screening (Wheat Quality Australia 2015). In addition, lack of
acceptance of established yet susceptible varieties, along with
loss of advanced lines late in the breeding process, is a major
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impediment for industry. Kingwell and Carter (2014) have
shown that estimated costs associated with LMA issues under
current industry standards could translate to an annual loss
of AU$18 million to producers, breeders and industry for
Western Australia alone.

In order to mitigate LMA risk for the release of new
milling-grade wheat varieties, Wheat Quality Australia
(2015) requires breeders to utilise a screening protocol
designed at the University of Adelaide as a means to
support final classification assessments. Current LMA
screening of breeding material based on a cool-temperature
shock during later stages of grain development (Mrva and
Mares 2001) ensures that standards for producing milling
quality wheat are maintained. At present, neither the likely
risk of LMA being expressed in the field nor the relative risk
for different parts of the wheatbelt are well understood.
Consequently, a predictive LMA model based on climatic
conditions experienced in Australian wheat-growing regions
could be of value to the wheat industry.

Previous researchbyLunnet al. (1998) attempted todevelopa
predictive model for LMA based on meteorological conditions
for the United Kingdom, with some guidance from earlier
Australian research (Mares and Gale 1990; Mrva and Mares
1996a). That approach was not successful at the time because
uncertainty in genotype� environment interactions for inducing
LMA in a controlled environment confounded modelling with
only weather data. For example, observations suggested that
LMA could be induced following a transfer of plants between
conditions that resulted in either a warm-temperature or cool-
temperature shock (Lunn et al. 1998). LMA expression was also
induced in a wheat variety (e.g. Pastiche) that had never
expressed LMA under actual field conditions.

Results of more recent controlled-environment studies
indicated that LMA expression was influenced by genotypic
factors and could be readily triggered by exposure to a cool-
temperature shock during the mid-grain-filling stage of
development, occurring from about 25–35 days post-anthesis
(Mrva and Mares 1996a, 1996b, 2001, 2002; Farrell and
Kettlewell 2008; Mares and Mrva 2008, 2014; Barrero et al.
2013; Farrell et al. 2013). In phenological terms, this LMA
sensitivity window extends from about 50% to 70% of the
thermal time accumulated between flowering date and
physical maturity.

Although previous experimental studies have identified some
environmental conditions that can induce LMA expression, the
range of conditions has yet to be verified in the field. This has
resulted in questions for both wheat breeders and research
scientists regarding the risk of LMA incidence and its
management.

As such, the objective of this study was to develop an
integrated predictive framework that can help to characterise
the likely risk of LMA incidence across thewheatbelt. This study
addresses two components for quantifying LMA risk. First is the
development of a predictive model based on the capacity to
diagnose the temperature regime(s) that might trigger LMA
expression. Second is the connection of the LMA predictive
model with wheat-production conditions across the Australian
wheatbelt by linking it with existing spatial modelling capacity
(Potgieter et al. 2006). Further work within this research project

aims to verify potential LMA trigger conditions by comparing
simulated results with measured data from field trials. A better
understanding and validation of field conditions that may trigger
LMA would enhance the LMA framework for simulating LMA
incidence in the field. Such a predictive model would help
industry to quantify actual LMA risk across the Australian
wheatbelt and thus assist with decision-making in relation to
managing LMA risk.

For our purposes, the predictive framework used long-term
daily weather data from high-quality climate stations across the
Australian wheatbelt. A biophysical crop model was applied to
estimate time to flowering and timing of a cool-shock sensitivity
window at grain development. The presence or absence of
cool-shock conditions was evaluated within the window of
LMA sensitivity. The methods used consider phenotypic and
environmental criteria identified from prior research trials
associated with Australian genotypes (Mrva and Mares 2001;
Mares andMrva 2008, 2014). Themodelling approach currently
focuses on temperature regimes alone; other genetic,
biochemical and physiological factors are likely involved in
LMA expression, but they are not addressed here.

The sensitivity window for a cool-shock-type expression is
inherently linked to flowering time, which in turn is strongly
controlled by wheat maturity type, seasonality of sowing date,
and prevailing environmental conditions. For simulation
modelling purposes, the presence of a cool shock within the
sensitivity window was deemed to occur after two conditions
were satisfied: first, a maximumdaily temperature of 248Cneeds
to be exceeded; and second, within the remaining sensitivity
window, a maximum daily temperature of <188C must occur
for at least any 3 days.

The frequency of years with the presence of a cool-shock
regimewas estimated for each shire across Australia’s wheatbelt
for two types of sowing scenarios: (i) weather-driven flexible
sowing dates, which simulated the timing of sowing each year
associated with traditional crop practices; and (ii) three fixed
sowing dates, representative of early-, middle- and late-season
planting dateswithin a preferred plantingwindow forAustralia’s
wheat-growing season.

Likelihood estimates were derived from the frequency
analysis and transformed into putative-risk footprint maps to
illustrate the likelihood of experiencing the cool-shock
temperature conditions. An advantage of the predictive
modelling framework is that it can be readily modified to
diagnose a range of environmental conditions that may trigger
LMA based on new information obtained through trials in semi-
controlled environments or field experiments.

Data and methods
Study area and long-term weather data
The study region included the main wheat-producing shires of
Australia,which extendacross large regionsofQueensland,New
SouthWales (NSW),Victoria, SouthAustralia (SA)andWestern
Australia (WA) (Fig. 1). Digitised shire boundaries applicable
for census purposeswere obtained from theAustralianBureau of
Statistics (http://www.abs.gov.au/).

Long-term weather data that included daily maximum and
minimum air temperatures for 1901–2016 for Australia were
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obtained from the SILO (Scientific Information for Land
Owners, https://www.longpaddock.qld.gov.au/silo/) database
for >1750 stations across the wheatbelt. SILO provides
spatially and temporally consistent datasets that are applicable
for research and information purposes. Where available, SILO
daily weather data comprise observed records maintained by the
Bureau of Meteorology (www.bom.gov.au/). Any missing data
are then estimated by spatial interpolation (e.g. spline and
kriging) with adjustments to account for the effects of
elevation differences, as described by Jeffrey et al. (2001).

Cool-shock trigger conditions associatedwith LMA induction

The preliminary model developed here used temperature
conditions similar to the cool-shock regime established from
semi-controlled experiments for expression of LMA in
Australian genotypes (Mrva and Mares 2001, 2002; Mares
and Mrva 2008, 2014). These conditions were selected
because this approach is currently applied to phenotype wheat
lines for LMA screening under wheat classification guidelines
(Wheat Quality Australia 2015). Further, knowledge is lacking

on the differences in the effects of consecutive cool events or
separate cool events on LMA expression.

Based on the experimental research, the following triggering
criteria were applied to simulate conditions under which LMA
triggering due to a cool shock might occur in the field:

* The cool shock temperature conditions are evaluated within
the LMAsensitivitywindow,which extends from50% to 70%
of the thermal time from flowering to physical maturity.

* At least one observed daily maximum temperature exceeding
248C occurs within the LMA sensitivity window.

* After the initial high-temperature condition is satisfied, cool-
shock conditions are deemed to exist when a daily maximum
temperature �188C occurs for any 3 days or more in the
remaining sensitivity window.

The initial high-temperature and cool-shock conditions do not
need to be consecutive as long they occur within the sensitivity
window. A binary yes/no result can then be recorded depending
on whether the environmental conditions satisfied the
criteria. The method also allows for the duration of exposure
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Fig.1. Mapof theAustralianwheatbelt showingshireboundariesofwheat-producing shires (grey lines), broadwinter-croppingarea (all shading),
distinct agro-climatic regions (different shading) and locations of reference sites for calibrating crop-phenology coefficients.
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to be computed as an accumulated thermal time. The current
framework is flexible and can be adapted to simulate incidence
risk associated with other criteria as knowledge of triggering
conditions develop (e.g. continuous cool-temperature regime, as
noted by Mares and Mrva 2014).

Simulating the presence of cool-shock conditions at
shire scale

A crop-yield simulation model for Australian wheat
(‘Oz-Wheat’) was selected for the long-term modelling. The
model was chosen in part because of the spatial scale at which
Oz-Wheat operates (shire-scale to regional) and in part for its
suitability for Australian conditions. For simulation purposes,
Oz-Wheat was modified to diagnose a targeted temperature
regime for cool-shock-type conditions from input weather
data within the sensitivity window at mid-grain-filling (as
described previously).

Model simulations were conducted at each climate station
from 1901 to 2016 for two scenarios, flexible and fixed sowing,
and the annual results were aggregated to shire scale by using the
Thiessen polygon weighting procedure applied in the Oz-Wheat
shire-yield prediction model (Potgieter et al. 2006).

The flexible-sowing scenario utilised a broad planting
window that set the earliest and latest sowing dates for each
region and considered three representative wheat maturity
types (slow, medium and quick). In this scenario, planting
dates between late April and early July were determined
dynamically based on the timing of accumulated rainfall
>15 mm over a consecutive 5-day period. Planting windows
varied from45 to 60days across thewheatbelt and extended from
late April (Queensland) and early May (southern states) through
mid–late June. The representative maturity type planted
depended on when the rainfall conditions were satisfied. The
slow-maturing variety was sown if conditions were met during
the first 3 weeks of the planting window; a quick-maturing
variety if conditions were met during the last 3 weeks; and a
medium-maturing variety if conditions were met during the
middle weeks. This scenario considered variable planting

dates similar to a traditional wheat-management practice
over years across the wheatbelt and involved different
sowing dates for every year in the analysis. This introduces
significant variability in flowering dates and, hence, the
likelihood for cool-shock conditions to be present or absent
in the sensitivity window each year.

For the fixed-sowing scenario, a series of diagnostic
simulations was applied to monthly fixed sowing dates to
allow seasonal variations in temperature conditions to be
examined without confounding by time of sowing. In this
case, a combination of sowing times and maturity types
included slow-maturing, medium-maturing and quick-
maturing varieties planted on 1 May, a medium-maturing
variety planted on 1 June, and a quick-maturing variety
planted on 1 July each year. Sowing a range of maturity types
for the 1 May planting reflects recent adjustments to cropping
practices such as trialled in South Australia for improving
wheat yields (Hunt et al. 2016).

Flowering date is an important variable to help in estimating
the timing of the sensitivity window during mid-grain-filling
when LMA might be triggered. Flowering dates for the three
maturity types (slow, medium, quick) were simulated in
Oz-Wheat based on a thermal-time target in degree-days.
Thermal-time values were obtained from calibration runs
generated with the Agricultural Production Systems Simulator
(Holzworth et al.2014); for this purpose,APSIMversion 7.7was
applied at 16 reference sites across thewheatbelt (see Fig. 1) for a
period of 24 years from 1991 to 2014. For each location,
the planting window was divided into equal periods of early,
middle and late sowing dates. The representative slow-maturing
(Sunbri), medium-maturing (Cunningham) and quick-maturing
(Hartog) varieties, each with given coefficients for
photo-thermal control of phenology (available in APSIM
documentation, https://www.apsim.info/), were sown on a
fixed date at the midpoints of the respective planting periods,
which varied regionally within each state (Table 1). Flowering
thermal-time targets required for use in Oz-Wheat were derived
from the results of the calibration runs at each reference location.

Table 1. Locations of reference sites for APSIM calibration runs, their Bureau of Meteorology (BoM)
station numbers, and sowing dates for reference varieties with slow, medium and quick maturity

State Reference
location

BoM
station no.

Lat. Long. Sowing date for maturity type:
Slow Medium Quick

Qld Emerald 35027 –23.53 148.16 25 April 15 May 05 June
Qld Banana 39003 –24.47 150.13 25 April 15 May 05 June
Qld Dalby 41023 –27.18 151.26 11 May 23 May 05 June
Qld Roma 43091 –26.55 148.78 11 May 23 May 05 June
NSW Dubbo 65012 –32.24 148.61 11 May 31 May 20 June
NSW Moree 53027 –29.50 149.90 11 May 31 May 20 June
NSW Wagga 73127 –35.05 147.35 11 May 23 May 05 June
Vic. Horsham 79023 –36.65 142.10 25 May 07 June 20 June
Vic. Swan Hill 77042 –35.34 143.55 25 May 07 June 20 June
SA Keith 25507 –36.10 140.36 11 May 31 May 20 June
SA Maitland 22008 –34.37 137.67 11 May 31 May 20 June
SA Minnipa 18053 –32.86 135.16 11 May 31 May 20 June
SA Roseworthy 23021 –34.53 138.75 11 May 31 May 20 June
WA Kojonup 10582 –33.84 117.15 11 May 31 May 20 June
WA Merredin 10092 –31.48 118.28 11 May 31 May 20 June
WA Mingenew 8088 –29.19 115.44 11 May 31 May 20 June
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Classification of putative risk and spatial extent

The likelihood of experiencing temperature conditions similar to
the cool-shock regime was estimated for each shire and then
characterised more simply in terms of a putative risk. First, the
frequency was computed of ‘yes’ cases for presence of cool-
shock-type conditions during the sensitivity window for each
shire. The frequency results were then mapped based on three
broad putative risk categories: low, moderate or high.

Low risk was assigned where the frequency of cool-shock-
type conditions appeared to be present for <33% of all
simulated years. Moderate risk was assigned to a frequency
range of 33–66% of all years, and high risk was assigned to a
frequency >66%. In addition, the spatial extent of putative-risk
footprints was quantified (percentage) based on the ratio of
wheat-cropping area for each risk category (i.e. likelihood)
relative to an estimate of the wheat-cropping area within each
state. Analysis of Oz-Wheat output was done by using the R
statistical computing language (R Foundation for Statistical
Computing, Vienna), and generation of putative risk maps
was done using ArcGIS version 10.5 software (Esri,
Redlands, CA, USA).

Significance of flowering-date variability

Flowering time as influenced by time of sowing, wheat maturity
type, and prevailing weather is an important consideration for
LMAriskmodelling.Here,weconsidered thepotential statistical
significanceofvariations inflowering times across thewheatbelt.
Analysis was done across shires within each state for the average
flowering dates after planting on a fixed sowing date (1 May, 1
June and 1 July).

A Kruskal–Wallis test (Hollander and Wolfe 1973) was first
applied to determine whether differences across rank sums of
average flowering dates were significant. A Kolmogorov–

Smirnov test (Wilks 1995) was then applied to distinguish
significant differences among the distributions. Both tests
were done using R.

Integrated model-simulation framework

Figure 2 outlines the workflow for generating putative risk
patterns at shire scale based on simulation results from
Oz-Wheat and post-processing of the output data. External
information related to crop phenology, management and cool-
shock triggeringwas supplied toOz-Wheat as look-up tables and
hard-coded parameters. Additional input data included
climate station identification and long-term daily rainfall and
temperature weather data. Oz-Wheat was run at each station to
determine whether cool-shock-type conditions within the
sensitivity window occurred during each simulation year.
Results were aggregated to shire scale across the wheatbelt
based on areal weights computed for adjacent stations, using
the Thiessen polygon method.

A frequency analysis was then applied to derive likelihood
estimates for the percentage of years in which the target
conditions appeared to be present within each shire, which
was then classified into the three broad risk categories.

Results

Putative risk of experiencing cool-shock conditions for
flexible sowing dates

Figure 3 shows amap of putative risk generated from analysis of
results for the flexible sowing dates, a scenario similar to
traditional weather-driven cropping practices. Although the
map does not depict the actual risk, the results are indicative
and show notable spatial patterns for the categories low (<33%),
moderate (33–66%) and high (>66%) putative risk. Moderate
and higher risks of experiencing cool-shock-type conditions

Oz-Wheat Parameters

Input Data

Diagnose Temperature Conditions

Computed Station Areal Weights

Crop: phenology, management
Target conditions that may trigger LMA:

Sen. window (50 − 70% TT fraction FL-PM)
Pre-triggering max T > 24 °C
Present if max T ≤ 18 °C after 3+ days

Station location & Shire ID
Long-term weather (1901 − 2016)

Generate annual records for simulated
presence or absence of target criteria

Equal dist. weight (Thiessen polygons)

Putative Risk ‘Footprint’ Map

Likelihood = freq. of years occurred /
total simulation years

Summarise at Shire Scale

Aggregate station results to shire scale
Generate binary data for Yes / No cases

•
•

-
-
-

•
•

•

•

•
•

•

Fig. 2. Regional-scale analysis workflowapplied for this study usingOz-Wheatmodified for simulating one set of
targeted temperature conditions similar to the cool-shock regime.
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were clustered along a narrow band of shires across the southern
region of Australia. For Queensland and NSW, the risk was
estimated to be quite low, with a computed mean across that
wheatbelt of only 3% (Queensland <1% and NSW <5%).

Risks also appeared relatively low for 91% of the region in
Victoria and for 85% inWA.A relatively small proportion of the
wheatbelt was classed as high risk—less than a combined 6% of
the wheat regions in WA, SA and Victoria. The moderate-risk
class seemed to comprise a relatively small region of the
wheatbelt in Victoria (5%) and slightly more in WA (15%),
but the risk footprint was muchmore extensive in SA, impacting
40% of that region.

In general, the very broad spatial extent of the lower risk class
might be expected because of the random variability introduced
by different sowing dates each year, a range of maturity types,
and inter-annual variations in prevailing weather. These results
wouldbeexpected tovary for different sowingdates andmaturity
types, in particular for earlier sowing dates and early-maturing to

medium-maturing varieties because cooler conditions are likely
to be more frequent during the subsequent grain-filling period.

This possibility was examined based on results for scenarios
of three fixed sowing dates, as detailed below.

Putative risk of experiencing cool-shock conditions for
fixed sowing dates

Variability of flowering day of year

Environmental conditions are highly variable across the
Australian wheatbelt. As such, the risk of flowering times
(and subsequent grain-filling) coinciding with seasonally
cooler temperatures is an important factor for LMA risk, and
hence is an important consideration for predictive modelling.
For illustrative purposes, the range of simulated flowering dates
was analysed across the wheat-producing states.

Figure 4 summarises the average simulated flowering day
of year among shires across each state for 116 years of
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Fig. 3. Putative risks of experiencing temperatures of the cool-shock regime in the field for flexible sowing dates, based on weather data from
1901 to 2016.
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simulations involving different fixed sowing dates and maturity
types. Boxplots show the 25th and 75th percentiles (upper and
lower box limits), median flowering day of year (bold line inside
box) and data range (end whiskers). The results highlight
the notable variability in distributions of average flowering
dates for different sowing dates within each state, and across
the wheatbelt. These variations reflect the large differences
among regional climate conditions across Australia’s range of
latitudes.

Results of the Kruskal–Wallis rank sum test applied
separately to each fixed sowing date showed differences
among flowering dates to be highly significant (P < 2.2e-16)
across the states. Further analysis with a Kolmogorov–Smirnov
test show significant differences for all comparisons of
distributions involving Queensland or Victoria (P < 0.01).
Results were less significant for some (but not all)
distributions of flowering dates for tests between SA and
NSW, as well as between SA and WA (P range >0.01–0.11).

Putative-risk footprints for fixed sowing dates

Cool-shock-risk footprint maps were generated for various
maturity types for 1 May, 1 June and 1 July fixed sowing dates
based on analysis of the long-term weather data (1901–2016).
Figure 5 shows the risk patterns for 1 May and 1 June fixed
sowing dates and includes pie charts to show estimates of the
wheat area (percentage) within each state assigned to the risk
classes. Compared with the results for the flexible-sowing
scenario, there was a large increase in both the magnitude and

spatial extent of risk for many wheat-producing regions for the 1
May sowing date, except inQueensland. For example, the spatial
extent of moderate-risk and high-risk classes increased notably
from a slow-maturing to a medium-maturing variety. There was
also a large increase in extent for themoderate-risk class from the
medium-maturing to the quick-maturing variety, but the extent
for the high-risk class increased only slightly.

Shires across Queensland tended to be characterised as very
low risk, as indicated by a calculated mean risk of <5.5% for
the quick-maturing variety planted on 1 May. Within NSW,
95–100% of the wheat region was also classed as low risk for
the 1 May medium-maturing and slow-maturing scenarios;
however, for the 1 May quick-maturing scenario, only 67% of
theNSWwheat regionwas classed as low risk, with 31% classed
as moderate risk and 2% as high risk.

The risks were much greater for wheat regions within SA,
Victoria andWA for the 1May sowing date and with a medium-
maturing or quick-maturing wheat variety. For example, 58%
and49%of thewheat region inSAwas classed as high risk for the
quick-maturing and medium-maturing varieties, respectively.
For the same scenarios in Victoria, 41% and 24% of the wheat
regionwas also classed as high risk. Just 11%of thewheat region
in southern WA was classed as high risk. However, risks for a
slow-maturing variety sown on 1 May were notably reduced to
<8%, 12% and 1% across Victoria, SA and WA, respectively.

Large areas of thewheat regions inVictoria, SAandWAwere
classed as moderate risk for the 1May sowing date with all three
maturity types. For quick-maturing,medium-maturing andslow-
maturing varieties, respectively, this included 56%, 53% and
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27% of the wheat region in Victoria; 41%, 42% and 52% of the
wheat region in SA; and 48%, 25% and 19% of the wheat
region in WA. For a 1 June, medium-maturing scenario, 33%
of the wheat region was classed as moderate risk across SA,
and <10% across WA and Victoria. For all states, the risk was
generally low for the 1 July, quick-maturing scenario (results
not shown).

Further analysiswas conducted for thefixed sowing dates and
different maturity types to examine any changes in the putative-
risk footprints due to variations in El Niño Southern Oscillation
phases. Those results are not included as they provided no
evidence for an effect of La Niña (cool) or El Niño (warm)
conditions on the putative risks.

Discussion

An LMA simulation framework was developed with guidance
from previous research and applied to diagnose the presence of
cool-shock conditions, similar to LMA screening, across
the Australian wheatbelt. Other LMA-triggering conditions
(e.g. cool period without a cool shock) and other genetic,
biological and physiological factors are also likely involved in
field expression (e.g. Mares and Mrva 2014). The putative-risk
maps presented here are based on long-term climate information,
and the likelihood estimates may vary for different climate
periods, and in particular for more recent climate conditions.

Useful quantitative methods have been developed and
demonstrated here for simulating LMA risk, which can be
updated as knowledge on factors controlling LMA triggering
advances. For this study, analysis was done for only one set of
environmental conditions that may trigger LMA. Although such
conditions can induceLMAunder controlled screening, a further
research component aims to verify conditions that may trigger
expression in thefield.AvalidatedLMA-incidencemodelwould
allow for more precise quantification of actual LMA risk across
the wheatbelt. Therefore, the putative risk maps shown here are
not intended to be interpreted as actual LMA risk.

Despite these limitations, the results are a useful indicator of
‘hotspot’ regions where the relative risks of cool conditions are
expected tobehigher across theAustralianwheatbelt. The results
also show how risk patterns might change under different
cropping strategies. For instance, the risk of cool-shock-type
conditions in Queensland wheat regions was low regardless of
cropping scenario. However, the wheat regions in southern
NSW, Victoria, SA and WA were shown to carry more of the
moderate and higher levels of risk for quick-maturing and
medium-maturing varieties and earlier sowing dates.

Further, analysis of simulated flowering dates from this study
showed that >50% of the average flowering dates (i.e. 25th–75th
percentiles) occurred well before 7 September (day of year 250).
Consequently, a much greater risk of cool-shock conditions
would be expected owing to more frequent exposure to
cooler daytime temperatures during late winter and early
spring, in addition to cold fronts and frost events (Barlow
et al. 2015). In order to reduce the risks further, planting of
medium-maturing and quick-maturing varieties frommid to late
June would likely be required.

However, there are many risk trade-offs to consider when
designing optimal cropping strategies related to LMA

management. Although later planting dates might reduce the
risk of LMA, delaying flowering is known to reduce yield
potential (Woodruff and Tonks 1983). Consideration of
‘optimal flowering times’ to maximise yield while reducing
risks must take account of other damaging factors such as
frost or heat stress at the time of grain development (Boer
et al. 1993; Zheng et al. 2015; Flohr et al. 2017).

Implications for the Australian wheat industry

Wheat Quality Australia classification guidelines currently
address LMA risk through a strict policy to screen new
milling quality varieties for the LMA defect. Here, we present
an integrated framework for predicting risks of experiencing
temperature conditions known to trigger LMA incidence in
controlled-environment screening. This preliminary model
requires enhancement and validation to be able to produce an
actual LMA risk profile for field conditions; nonetheless, it
demonstrates the value of applying such an integrated
framework to quantify field risk in a spatial context as a
means to inform industry.

An enhanced ability to characterise and integrate genotype�
environment interactions that could influence LMA expression
in the field would be invaluable for informing breeding systems
and industry policy on LMA risk. With an improved and
validated predictive model for LMA incidence in the field it
would be possible to quantify LMA risk more precisely and
would help industry to (i) examine and quantify the actual risk of
LMA incidence at field scale, (ii) generate seasonal diagnostic
data to identify ‘hotspot’ regions for likely LMA incidence, and
(iii) improve breeding-systems management to support genetic
gain for yield while managing LMA risk.

Further research is under way with the objective of verifying
conditions that may result in LMA expression in the field.
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