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Abstract. Canola (Brassica napus L.) is grown on >8 Mha in Canada and is sensitive to high temperatures; therefore,
research on breeding methodologies to improve heat-stress tolerance is warranted. This study utilised a doubled-haploid
population created from two parents (PB36 and PB56) that differed in their ability to set seed following growth at high
temperatures. The experiment was designed to identify potential quantitative trait loci (QTLs) responsible for
conferring tolerance to increased temperatures, and to utilise this population as a test case for evaluating the
prospects of whole-genome prediction. The population was phenotyped in a split-plot, randomised complete block
experimental design at three locations with two planting-date treatments. The first planting date was during the normal
planting period (control), and the second planting was timed to experience increased average temperatures (1.78C, 2.08C
and 1.28C) and increased number of days with maximum temperatures above the critical temperature of 29.58C (4, 12
and 3 days). The stress treatment reduced yield on average by 16.7%. There were 66 QTLs discovered across the nine
traits collected. Given the quantitative nature of the traits collected, the ability to use whole-genome prediction was
investigated. The prediction accuracies ranged from 0.14 (yield) to 0.66 (1000-seed weight). Prediction had higher
accuracy within the stress treatment than within the control treatment for seven of the nine traits, demonstrating that
phenotyping within a stress environment can provide valuable data for whole-genome predictions.
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Introduction

Breeding for heat-stress tolerance in cool-season crops such as
canola (Brassica napus L.) is necessary to ensure continued
genetic gain in a warming environment. The impact of
increased temperatures on canola was demonstrated through
an analysis of growers’ canola yields over 34 years in
Saskatchewan, Canada, which found that for every 18C
increase in temperature, yield declined by 75.5 kg
ha–1(Kutcher et al. 2010). The threshold maximum
temperature at which canola yields have been found to
decline was reported to be 29.58C (Morrison and Stewart
2002). In 2016, canola was planted on 8.23 Mha in Canada
(Statistics Canada 2016). Using this information, a 18C
increase in mean temperature could translate to an annual
loss in canola production of >0.5 Mt in Canada. Progress has
been made with respect to heat tolerance of crops such as
broccoli (Brassica oleracea L.), cowpea (Vigna unguiculata
(L.) Walp.) and potato (Solanum tuberosum L.) through
conventional breeding (Driedonks et al. 2016). Considering
this progress and the increased availability of genomic

data, breeders may exploit this information to decrease the
time it takes to discover and integrate a new trait such as
tolerance to increased temperatures into their germplasm
and cultivars.

Genetic linkage mapping when combined with phenotypic
data enables the discovery of quantitative trait loci (QTLs)
(Xu 2010). These QTLs enable the implementation of
marker-assisted selection (MAS) or marker-assisted
backcrossing breeding strategies to retain the trait of
interest through generations without costly phenotypic
screening (Collard et al. 2005). For QTLs to be highly
effective within breeding programs, they must explain a
significant proportion of the variation and be stable across
environments and populations (Collard et al. 2005). QTLs
discovered for abiotic stress traits such as waterlogging and
drought have been mapped in B. napus (Li et al. 2014),
although the maximum amount of phenotypic variation
explained by any one QTL was relatively low, with a
maximum of 12.56%. A review of abiotic stress QTLs by
Collins et al. (2008) lists a multitude of QTLs; however,
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attempting to utilise many QTLs with minor effects for genetic
gain of a single trait is inefficient and difficult to manage
within a breeding program (Bernardo 2016).

A review by Jha et al. (2014), lists numerous QTLs
responsible for conferring heat tolerance within many
species including Arabidopsis thaliana L., barley (Hordeum
vulgare L.), maize (Zea mays L.), potato, rice (Oryza sativa
L.), sorghum (Sorghum bicolor (L.) Moench), tomato
(Lycopersicon esculentum Mill.) and wheat (Triticum
aestivum L.), thereby demonstrating the quantitative nature
of heat-stress response. With increased access to whole-
genome marker data, breeders are able to employ whole-
genome prediction (WGP) for highly quantitative traits
(Jannink et al. 2010). Unlike QTL discovery using linkage
mapping, WGP models do not have stringent statistical
significance limits and are therefore able to utilise all
genetic signals detected through the analysis (Meuwissen
et al. 2001). With the use of WGP, breeders are able to
predict performance of untested genotypes and therefore
decrease the time necessary to identify favourable allelic
combinations for highly quantitative traits within the
germplasm (Heffner et al. 2010). In maize, WGP has been
more effective for improving grain yield under drought stress
than phenotypic selection alone (Vivek et al. 2017). WGP has
been applied to B. napus doubled-haploid (DH) populations
for yield and quality traits with varying degrees of success,
depending on the population structure, number of individuals
within the population, marker density and trait heritability
(Würschum et al. 2014; Zou et al. 2016). With respect to heat
stress, Bita and Gerats (2013) discuss the difficulty in using
low-effect QTLs for improving quantitative traits such as
tolerance to increased temperatures and suggest WGP as a
promising alternative.

This research utilised a DH mapping population of
148 genotypes derived from two canola inbred lines that
differed in their ability to set seed under heat stress
(Koscielny et al. 2018b). The objectives of this research
were to: (i) identify QTLs responsible for conferring
tolerance to increased temperatures, and (ii) utilise this
population to assess the prospects of WGP for improving
stress tolerance. Both MAS and WGP are useful breeding
strategies, but selecting the optimal strategy is imperative in a
competitive research area such as plant breeding. This research
applies both approaches across control and high-temperature
environments and discusses strengths and challenges of each
strategy.

Materials and methods
Plant materials

Seed from the F1 of a cross between two B. napus DH
genotypes, PB36 (heat tolerant) and PB56 (heat
susceptible), as determined during a prior growth-chamber
experiment (Koscielny et al. 2018b) were used as donors to
create a DH population. These 148 microspore-derived DH
genotypes were seed-increased in a greenhouse in Carman,
Manitoba, Canada, to provide sufficient seed for field trials.

Field experiments and environmental data

Field experiments were set up in a split-plot randomised
complete block design with two replications. The main effect
was planting date with an early and a late planting date, whereby
the reproductive period of the second planting was shifted to a
later time in order to align with increased summer temperatures.
The subplot was genotype. The field experiments were set up in
Carman,Manitoba (49.4903, –98.0027) in 2015 and 2017, and in
Viluco, Chile (–33.7965, –70.8075) in 2015. Carman soil was of
sandy loam texture, and both treatments received the same
fertiliser blend of nitrogen, phosphorus, potassium and sulfur
(N-P-K-S, 89-34-0-22 kg ha–1) applied before planting. Viluco
soil was of a loam texture, and both treatments had the same
fertiliser blend of N-P-K-S (125-61-69-0 kg ha–1) applied
through the irrigation at 20 and 40 days after planting. The
genotypes were seeded in a 3-m row with a 0.5-m spacing
between rows. The 2015 and 2017 Carman sites were rainfed,
and volumetric water content to a depth of 0.18 m was
collected weekly using a TDR 100 Soil Moisture Meter
(Spectrum Technologies, Aurora, IL, USA). The 2015 Viluco
site was irrigated with drip-tape irrigation supplying 288 mm
water; in addition, rainfall of 83.5 mm and 6.2 mm occurred for
the first and second planting dates, respectively. Irrigation
applications were made every 5 days to ensure that no
differences in treatment were due to soil moisture.

Temperatures were collected every 30minwith a 2000 Series
Watchdog weather station (Spectrum Technologies). For the
second planting date, the average daily mean, maximum and
minimum temperatures were higher at all environments, and
therefore this planting date will be referred to as the stress
treatment (ST), with the first planting date being referred to as
the control treatment (CT) (Table 1). Number of days to start of
flowering (from planting date to date of first flower), duration
of flowering (from date of first flower to date of last
flower), days to physiological maturity (from planting date

Table 1. Location planting dates with temperature and soil-moisture variables during the entire growing season
and daylength at the beginning of flowering

Environment Planting
date

Temperature (8C) No. of days >29.58C Soil
moisture (%)

Daylength
(h:min)Mean Max. Min.

Carman 2015 12 May 17.8 24.4 10.8 10 35.6 16:14
01 June 19.4 26.2 12.4 14 34.3 16:02

Viluco 2015 29 Sept. 17.5 25.6 9.3 28 Irrigated 14:06
30 Oct. 19.5 28.1 10.9 40 Irrigated 14:22

Carman 2017 10 May 17.5 24.0 10.6 9 31.2 16:14
05 June 18.7 25.5 11.6 12 37.0 15:59
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until seed in the bottom third of the main raceme had turned
brown), seed yield from the middle 1 m of the row (g), and
1000-seed weight (g) were collected on all plots. Seed-quality
parameters were estimated with an NIRSystem 6500 (Foss,
Hillerød, Denmark); oil and protein content are presented as a
percentage of dry weight, glucosinolate content as mmol g–1,
and saturate content as the sum of C12:0, C14:0, C16:0, C18:0,
C20:0, C22:0 and C24:0 expressed as a percentage of total
fatty acids (Daun et al. 1994).

Phenotypic analyses

Statistical analysis of the phenotypic data was completed by
using ASReml 4 (VSN International, Hemel Hempstead, UK)
to estimate the best linear unbiased predictions (BLUPs) for all
entries (Gilmour et al. 2009). The model used was y = Xb + Zu
+ e, where y was the observed phenotype, b the fixed terms for
matrix X, u the random terms for matrix Z, and e the error
matrix N(0,S) where S was an AR1 � AR1 structure (Gilmour
et al. 1997). For the single-site analysis, an overall mean and
treatment (CT, ST) were considered as fixed effects. Random
effects were row and column nested within treatment, entry,
and treatment � entry. The multi-location model had overall
mean, treatment, location and treatment � location as fixed
effects. Random effects were row and column nested within
location and treatment, entry, treatment � entry, location �
entry, location � treatment � rep, and location � treatment �
entry. The analysis to generate the BLUPs for the WGP was a
multi-location analysis with the control and heat treatments
being analysed independently. Here, overall mean and location
was treated as a fixed effect. Random effects were row and
column nested within location, entry, and location � entry.
The fitted WGP models are thus ‘treatment-specific’.
Heritability (H2) was calculated within treatment by using
the following model (Cullis et al. 2006):

H2 ¼ 1� ðs:e:d:Þ2
ð2s2

gÞ
where s.e.d. is the average standard error of the differences
between entries, and s2

g is the sum of the genotypic and
genotype � environment variance assuming a compound
symmetry structure (Smith et al. 2005). R 3.3.1 (The R
Foundation, Vienna) was used to calculate the Pearson
correlation coefficients (r) and the t-test for the trait
relationship matrices.

Genotypic analysis

The two parental genotypes had previously been fingerprinted
with 1788 and 1663 single-nucleotide polymorphisms (SNPs)
for PB36 and PB56, respectively. This information was used to
select 526 polymorphic TaqMan SNP markers for the DH
population to be genotyped by using an array tape (Douglas
Scientific, Alexandria, MN, USA). Once SNPs were assessed
for missing data and segregation distortion, 368 SNPs were
used to create the final linkage map in MapDisto 1.7 (Lorieux
2012) with an average distance of 4.7 cM between SNPs and a
total genetic distance of 1725 cM. The genetic map, and the
phenotypic BLUPs, were used to identify QTLs through
composite interval mapping using 1000 permutations at a

P-value of 0.05 in Windows QTL Cartographer V2.5_011
(WinQTL) (Wang et al. 2012), and only QTLs having a
significant LOD score based on the permutation test are
reported. QTLs present in all three locations were reported
through a combined analysis and defined as ‘stable’ QTLs,
whereas those present in only one or two locations are reported
on a location-specific basis as ‘putative’ QTLs. Genomic
BLUP (GBLUP) was used as a WGP model (Meuwissen
et al. 2001), fitted with the rrBLUP R package (Endelman
2011) in R 3.3.1. Specifically, the model was y = m + g + e
where y is the vector of phenotypic values (BLUPs), obtained
from the phenotypic analysis described before. The intercept is
denoted by m. The genotypic values in vector g (i.e. the
genomic estimated breeding values, or GEBV) were
assumed to be distributed as g � Nð0;Gs2

gÞ and the
residuals as e � Nð0; Is2

eÞ, with I being the identity matrix.
The matrix G is the genomic relationship matrix of the entries
and was calculated as described by Endelman (2011) with the
rrBLUP package, from the same 368 SNPs used for the QTL
mapping. The rrBLUP package uses restricted maximum
likelihood (REML) for estimating the variance components
s2
g and s2

e . Prediction accuracy was evaluated in a random
cross-validation. The training set used for fitting the model
comprised a random sample of 104 genotypes (70%), with the
remaining 44 genotypes (30%) used as the validation set (Jan
et al. 2016). Two prediction scenarios were considered:
prediction within a treatment (‘within’, e.g. using a ST
training set to predict the performance of the validation
lines under ST), and prediction across treatments (‘across’,
e.g. using a ST training set to predict the performance of
the validation lines under CT). The prediction accuracy
(i.e. correlation between predicted and true genetic values)
was calculated by dividing the Pearson correlation coefficient
between predicted and observed trait values of the validation
genotypes by the square root of the heritability estimated
for the corresponding treatment (Legarra et al. 2008). The
cross-validation was replicated 500 times for each treatment
and the results summarised as the mean and standard
deviation of the prediction accuracies.

Results

Planting dates

The mean, maximum and minimum temperatures for the
second planting date were on average 1.68C, 1.98C and
1.28C warmer than those of the first planting date
(Table 1). The number of days >29.58C was greater for the
second planting date, with Carman 2015 having four
more days >29.58C, Viluco 2015 having 14 more and
Carman 2017 having three more. These two factors of
increased mean temperatures and increased number of days
above the critical threshold temperature provide evidence that
genotypes sown on the second planting date would have
experienced increased temperature stress. Soil moisture was
monitored at both Carman locations, with the CT having
slightly higher water content in 2015 and slightly lower
water content in 2017 than the ST, and Viluco was irrigated
to ensure moisture availability was equal across planting dates.
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Phenotypic analysis

There was a significant effect of treatment, with a decline in
seed yield (YIELD) for the ST at all locations ranging from
14.6% to 18.2%, with the combined analysis having a 16.7%
decline (Supplementary Materials table S1, available at the
journal’s website). All traits for both treatments at all locations
had significant differences within population (table S1). The
DH population exhibited transgressive segregation for all
traits and treatments, and at all locations. The number
of days to flower initiation (DYSFLB), duration of
flowering (FLWDUR), and days to maturity (MAT) all
declined within the ST, whereas glucosinolate content
(GLU) increased (Fig. 1).

The combined analysis for FLWDUR, 1000-seed weight
(TSW), protein percentage (PRO), and GLU had a significant
negative correlation with YIELD in both treatments, whereas oil
percentage (OIL) had significant positive correlation with
YIELD (Fig. 2). MAT was negatively correlated with YIELD

in both ST and CT, although the negative correlation was only
statistically significant in ST.

QTL mapping

Linkage mapping analysis identified 66 QTLs across the nine
traits and two treatments (table S2). Eight of these QTLs were
stable throughout the three environments and the combined
analysis. The remaining 58 putative QTLs were found in one
or two of the locations. The maximum amount of variation
explained with a single QTL was 45.2% in the CT and 54.1%
in the ST for DYSFLB (Table 2). This QTL was at the same
location on linkage group A02 in both treatments, but only at a
single location (Viluco 2015). However, no stable QTLs were
found for DYSFLB. The greatest amount of variation
explained by a single stable QTL was for FLWDUR
(17.7%) in the ST. A QTL associated with YIELD was
found in the ST at Viluco 2015 on linkage group A02 and
explained 11.4% of the variation. This QTL overlapped with
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Fig. 1. Violin charts of the phenotypic best linear unbiased predictions from the combined analysis of Carman 2015, Viluco 2015 and Carman 2017.
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QTLs for FLWDUR and TSW found within the Carman 2015
environment and a QTL for saturated fatty acid content (SAT)
within the same environment. Seed-quality traits accounted for
28 putative and four stable QTLs across both treatments. OIL
had a stable QTL in the ST compared with the CT, whereas
PRO had a single stable QTL present in both treatments.
Although OIL and PRO were highly correlated, the
QTLs did not overlap; however, they were adjacent on
linkage group A09.

Whole genome prediction

The broad-sense heritability ranged from a low of 0.64 for
YIELD in the CT to a high of 0.97 for GLU in the ST
(Table 3). For the ‘within’ prediction scenario, the average
prediction accuracy ranged from 0.14 for YIELD in the ST to
a high of 0.66 for TSW. In general, the ‘within’ prediction
accuracy was higher for the ST than for the CT for all traits

except YIELD and SAT (Table 3). Using the ST training set to
predict performance in CT decreased the prediction accuracy
for DYSFLB and YIELD compared with use of a CT training
set (i.e. ‘within’ CT) (Table 4). However, when the CT training
set was used for predicting performance in the ST, the
accuracies declined for all traits relative to the ‘within’ ST
prediction, with the exception of YIELD. Traits related to plant
development (DYSFLB, FLWDUR and MAT) showed the
greatest decrease in accuracy, with a drop of 0.20, 0.17 and
0.15, respectively. Only a minor decrease in accuracy from
‘within’ to ‘across’ was observed for TSW and the seed-
quality traits (OIL, PRO, GLU, SAT).

Discussion

Yield losses of 75.5–133 kg ha–1 have been reported with a 18C
rise in mean temperatures (Nuttall et al. 1992; Kutcher et al.
2010). Morrison and Stewart (2002), indicated that 29.58C was
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the threshold temperature at which canola yields decline.
Considering that the ST had an increase >18C in mean
temperature and an increased number of days >29.58C, these
increased temperatures played a role in the decreased yield
within the ST. Breeding is the genetic gain through selection,
with breeders utilising tools to increase the response to selection
by increasing selection intensity and heritability while
minimising the amount of time required to describe a
phenotype accurately (Cooper et al. 2014). For success,
breeders therefore need to allocate finite resources
strategically to maximise genetic gain. MAS processes using
QTLs and WGP are tools that have shown promise in enabling
increased genetic gain (Varshney et al. 2016). This research
attempted to identify specific QTLs responsible for conferring
tolerance to increased temperatures, and although there was a
putative QTL discovered for YIELD within the ST that was
absent from the CT, the instability across environments and
low amount of variation explained limit the practical utility.
Further investigation across populations and environments
would be required before the implementation of a MAS
strategy. The relatively high prediction accuracies found,
and the high number of putative QTLs discovered, suggest
that a WGP breeding strategy would be more promising than
developing a MAS or marker-assisted backcrossing program

for the traits collected within this experiment. We evaluated
the utility of a popular WGP strategy of using phenotypic data
from a subset of a DH population to train WGP models for
predicting untested genotypes. This strategy has the potential
to increase the response to selection by utilising larger
populations without the need for increased resources
because the increased resource requirement for genotyping
could be offset by a reduction in phenotyping (Riedelsheimer
and Melchinger 2013).

The parameter DYSFLB did not have any relationship with
YIELD, and although there were several QTLs explaining a
larger portion of the variation within specific environments,
these QTLs did not respond differently across treatments. The
QTL that explained the most variation (45.3% CT, 54.0% ST)
at Viluco 2015 was located on linkage group A02, which
aligns with the existing literature for this trait within B. napus
(Chen et al. 2010; Nelson et al. 2014; Javed et al. 2016). Given
that this QTL was found within the environment that had
shorter days, it may be a candidate QTL if germplasm is being
transferred from long-day to short-day environments. The time
to initiation of flowering in B. napus has been shown to be
influenced by photoperiod and thermal time (Nelson et al.
2014). Although the difference in photoperiod was minor
between these two treatments, this difference, combined
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with the increased temperatures in the ST, could potentially
strengthen the genetic signal and thereby increase the amount
of genetic variation explained by the QTL in the ST. In
the absence of photoperiod differences or vernalisation
requirements, days to initiation of flowering has proven to
be a quantitative trait (Javed et al. 2016). The results in this
study show that DYSFLB can be predicted accurately with
WGP. This suggests that utilising WGP to select for earlier
flowering has the potential to minimise interaction of higher
summer temperatures with the reproductive stage of B. napus
and improve the avoidance of heat stress (Jung and Müller
2009; Franks 2011). Previous research has shown that traits
with few QTLs that explain more variation can be used with
higher prediction accuracy (Riedelsheimer et al. 2012). The
higher DYSFLB accuracy in the ST compared to the CT may
be due to the increased amount of variance explained by the
QTLs within the ST.

A stable QTL for FLWDUR in the ST but not the CT
requires further investigation because this QTL was stable
across environments and explained 17.7% of the phenotypic
variation. The negative correlation between FLWDUR and
YIELD (shorter flowering duration leading to higher yield)
within this population suggests that the ability to develop a
large sink strength earlier in the flowering period was linked to
higher yield. The ability to predict FLWDUR by using WGP

Table 2. Number of QTLs with a LOD score $2.5 for all traits and
control (CT) and stress (ST) treatments from individual location analyses
Inconsistent QTLs that did not appear at all locations (Carman 2015, Viluco
2015 and Carman 2017) are listed as putative; QTLs that were significant
within all environments are listed as stable with the corresponding range of
phenotypic varianceexplained (R2,%).DYSFLB,No.of days tobeginningof
flowering; FLWDUR, flowering duration; MAT, no. of days to maturity;
TSW, 1000-seed weight; YIELD, seed yield; OIL, oil content; PRO, protein
content; GLU, glucosinolate concentration; SAT, saturated fatty acid content

Trait Treatment Linkage mapping
No. of
putative
QTLs

R2 range of
putative
QTLs

No. of
stable
QTLs

Maximum
R2 of stable

QTLs

DYSFLB CT 7 4.6–45.2 0 –

HT 7 6.0–54.1 0 –

FLWDUR CT 8 4.9–21.5 0 –

HT 4 4.7–19.1 1 17.7

MAT CT 6 5.7–13.0 1 10.2
HT 8 5.3–18.6 0 –

TSW CT 9 4.0–13.5 1 16.9
HT 8 4.5–13.1 1 16.8

YIELD CT 4 6.3–12.1 0 –

HT 4 6.9–11.8 0 –

OIL CT 6 5.6–24.5 0 –

HT 4 5.5–12.7 1 15.7

PRO CT 6 5.8–13.5 1 13.5
HT 4 5.9–11.4 1 13.2

GLU CT 7 6.0–17.3 0 –

HT 8 5.2–14.0 1 10

SAT CT 6 6.2–24.4 0 –

HT 7 5.6–15.6 0 –

Table 4. Mean and standard deviation (s.d.) of whole-genome
prediction accuracy for the ‘across’ control (CT) and stress (ST)

treatment prediction scenario
DYSFLB, No. of days to beginning of flowering; FLWDUR, flowering
duration; MAT, no. of days to maturity; TSW, 1000-seed weight; YIELD,
seed yield; OIL, oil content; PRO, protein content; GLU, glucosinolate

concentration; SAT, saturated fatty acid content

Trait Prediction set Training set Mean s.d.

DYSFLB CT HT 0.35 0.12
HT CT 0.34 0.12

FLWDUR CT HT 0.42 0.14
HT CT 0.36 0.13

MAT CT HT 0.51 0.13
HT CT 0.43 0.11

TSW CT HT 0.64 0.10
HT CT 0.65 0.08

YIELD CT HT 0.21 0.15
HT CT 0.17 0.19

OIL CT HT 0.41 0.10
HT CT 0.41 0.11

PRO CT HT 0.50 0.10
HT CT 0.51 0.09

GLU CT HT 0.56 0.09
HT CT 0.54 0.10

SAT CT HT 0.48 0.10
HT CT 0.44 0.11

Table 3. Summary of variance components (s2
g, genotypic variance;

s2
g�e, genotype� environment variance), average standard error of the

differences between entries (s.e.d.), heritability (H2) and the mean and
standard deviation (s.d.) of whole-genome prediction accuracies for the
‘within’ control (CT) and stress (ST) treatment prediction scenario

DYSFLB, No. of days to beginning of flowering; FLWDUR, flowering
duration; MAT, no. of days to maturity; TSW, 1000-seed weight; YIELD,
seed yield; OIL, oil content; PRO, protein content; GLU, glucosinolate

concentration; SAT, saturated fatty acid content

Trait Treatment s2
g s2

g�e s.e.d. H2 Mean s.d.

DYSFLB CT 2.39 0.66 0.77 0.90 0.37 0.11
HT 1.49 0.25 0.64 0.88 0.54 0.10

FLWDUR CT 1.05 0.24 0.85 0.72 0.37 0.14
HT 0.85 0.50 0.83 0.75 0.53 0.12

MAT CT 1.57 0.18 0.86 0.77 0.43 0.12
HT 1.76 0.33 0.77 0.86 0.58 0.10

TSW CT 0.08 0.04 0.14 0.91 0.64 0.08
HT 0.07 0.02 0.13 0.90 0.66 0.08

YIELD CT 49.48 166.82 10.81 0.73 0.35 0.11
HT 72.33 60.94 9.77 0.64 0.14 0.14

OIL CT 2.18 1.41 0.77 0.92 0.38 0.10
HT 2.66 0.86 0.73 0.92 0.42 0.10

PRO CT 1.75 0.91 0.68 0.91 0.47 0.10
HT 2.25 0.59 0.61 0.94 0.55 0.09

GLU CT 5.55 1.57 0.85 0.95 0.55 0.09
HT 6.75 1.10 0.72 0.97 0.56 0.09

SAT CT 0.04 0.02 0.10 0.92 0.48 0.10
HT 0.04 0.01 0.09 0.93 0.47 0.10

Linkage mapping and WGP within canola Crop & Pasture Science 235



with greater accuracy in the ST than the CT might again be due
to the presence of a stable QTL with relatively large effect
within the ST. Numerous studies have reported on days to the
initiation of flowering, but none could be found reporting on
the flowering duration within B. napus. The association of
FLWDUR with YIELD, the stable QTL and WGP results
warrant further investigation of the importance of this
parameter.

The QTL mapping of MAT resulted in the discovery of a
stable QTL within the CT. Similar to reports in previous
literature, there were several putative QTLs demonstrating
the quantitative nature of this trait (Shi et al. 2009).
Although the stable QTL was discovered only within the
CT, the highest WGP accuracy was found within the
ST. This might be because of the considerable increase in
heritability, which is expected to increase accuracy (Daetwyler
et al. 2010). The reduction in prediction accuracies of
DYSFLB, FLWDUR and MAT for the ST with a CT
training set demonstrates the unique impact of the ST on
these traits. These reductions were not unexpected given the
influence of temperature on B. napus plant development
(Koscielny et al. 2018a).

The stable QTL on C03 within both treatments for TSW
has potential for breeding applications if it can be confirmed
across additional populations. Previous QTL mapping of seed
weight within B. napus has discovered several QTLs, but
there are no reports of the C03 QTL discovered in this DH
population (Fan et al. 2010; Ding et al. 2012; Fu et al. 2015).
Given the number of QTLs found within this population, the
previous literature and high prediction accuracy, future
research could focus on using WGP when attempting to
select for large seed size. Selection for large seed size will
require careful assessment of yield because large seed can be
negatively related to seed yield, and this covariance must be
considered during selection. The ST had very little impact on
QTL mapping and WGP enabling flexibility in phenotyping
TSW.

A single QTL for YIELD was found at Carman 2015 across
both treatments. There was a single QTL for YIELD found in
the ST, but it was present only within a single environment
and, thus, may not be useful within a breeding program. It is
already accepted that yield is a highly quantitative trait;
however, research has also shown the quantitative impact of
abiotic stresses such as heat and drought on yield (Pinto et al.
2010; Jha et al. 2014; Thudi et al. 2014). No stable QTLs were
discovered in this population for YIELD in the ST, which
indicates that WGP is the only viable marker-based approach
for selecting for YIELD under heat stress. The discovery that
prediction accuracy in the ST was considerably lower than in
CT may be due to factors such as heritability. Thus, the lower
heritability in the ST was likely partially responsible for the
lower accuracy. The lower heritability for YIELD in the ST
was not unexpected and has been reported in previous studies
(Witcombe et al. 2008). In addition, the quantitative nature of
the heat-stress response and the absence of any major QTLs
suggest that yield under increased temperatures has an even
more complex genetic architecture than under the CT, leading
to a negative impact on prediction accuracy (Daetwyler et al.
2010). The decrease in prediction accuracy for YIELD in the

CT when the ST was used as the training set and the increase in
prediction accuracy in the ST when the CT was used as
training set is possibly a consequence of these effects on
heritability.

The results demonstrating lower OIL and increased PRO on
average within the ST agree with the findings of Daun (2007)
in which significant variation was found across eight varieties
in the relationship of annual temperatures and oil or protein
content. Utilising MAS for improving seed-quality traits
within well-adapted inbreds would be challenging given
that there are several reports of QTLs for seed-quality traits
within B. napus (Yan et al. 2009; Chen et al. 2010; Javed et al.
2016) and the large number of minor-effect QTLs discovered
within this population. The seed-quality traits had high
heritability and accuracies ranging from 0.38 to 0.56. These
values were lower than reported previously (Jan et al. 2016;
Zou et al. 2016); however, this can be explained by the larger
training population sizes utilised in those studies. Würschum
et al. (2014) reported on prediction accuracies within DH
families consisting of few individuals and reported accuracies
similar to, or slightly lower than, the results reported here.
Previous studies on seed-quality traits have reported both a
significant genotype � environment interaction (Shafii et al.
1992; Delourme et al. 2006) and minimal impact of genotype
� environment interaction (Gunasekera et al. 2006; Aslam
et al. 2009). The similarity of accuracy for ‘within’ and
‘across’ predictions reported in this study suggests minimal
genotype � treatment interaction for the seed-quality traits
(OIL, PRO, GLU and SAT). Therefore, because of the high
heritability and the seemingly low impact of environmental
stresses such as high temperature, data on seed-quality traits
could be collected from a limited set of environments,
providing flexibility in the collection of these data and
potentially offering the ability to reduce required resources.

These results provide insight and direction for use of
linkage mapping and WGP for tolerance to increased
temperatures in canola. It is prudent to point out the
limitations and directions of further study. Several studies
have published QTLs that are population-specific (Bernardo
2016). Further research on the stable QTLs need to be
performed in additional populations. The population size in
this study limited the size of the training and prediction sets;
thus, an increase in population sizes would improve the power
of the experiment. Previous research has shown that increased
phenotypic heritability has a greater impact on WGP
accuracies than training set population size and marker
density (Zhang et al. 2017). Given this information future
research would benefit from ensuring sufficient resources are
deployed to ensure accurate phenotyping once a minimum
marker density is available on the germplasm of interest. This
information could provide future cost savings by enabling
breeding programs to phenotype a subset of germplasm
continually for creation of robust training sets while
predicting large numbers of genotypes with low-density
genotypic information. Several studies in bi-parental maize
populations have indicated that increasing marker density
beyond 300 with an average distance of 5 cM did not
noticeably increase WGP accuracies (Combs and Bernardo
2013; Technow and Totir 2015; Zhang et al. 2015).
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Conclusion

Linkage mapping has provided valuable insight into
qualitative traits, but its practical use in breeding for
quantitative traits such as yield or abiotic stress tolerance,
in which many minor QTL effects are involved, has proven
impractical (Bita and Gerats 2013). This research has shown
that although it is possible to discover stable QTLs that differ
across treatments, this same set of data can be deployed in a
WGP strategy. With the exception of yield, all traits had
prediction accuracies in the ST similar to or higher than in
the CT, suggesting that phenotyping within higher temperature
environments enables the generation of phenotypic data that
can be used for WGP while providing the opportunity to screen
for future warming environments. Further investigation into
the ability to utilise WGP for making genetic gain under high-
temperature stress should be conducted to enable gain within
this complex abiotic stress trait ensuring genetic gain can be
maintained or increased in a warming climate.
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