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Context. Production of rainfed (dryland) cotton (Gossypium hirsutum L.) occurs in many
places globally, and is always burdened with greater uncertainties in outcomes than irrigated
cotton. Assessing farm financial viability helps farmers to make clearer and more informed
decisions with a fuller awareness of the potential risks to their business. Aim. We aimed to
highlight key points of uncertainty common in rainfed cotton production and quantify these
variable conditions to facilitate clearer decision-making on sowing dates and row configurations.
Methods. The consequences of these decisions at six locations across two states in Australia,
given estimates of plant-available water at sowing, are expressed in terms of comparable
probability distributions of cotton lint yield (derived from crop modelling using historical
weather data) and gross margin per hectare (derived from historical prices for inputs and cotton
lint yield), using the copula approach. Examples of contrasting conditions and likely outcomes
are summarised. Key results. Sowing at the end of October with solid row configuration
tended to provide the highest yield; however, single- and double-skip row configurations
generally resulted in higher gross margins. Places associated with higher summer-dominant
rainfall had greater chance of positive gross margins. Conclusion. In order to maximise the
probability of growing a profitable crop, farmers need to consider the variabilities and
dependencies within and across price and yield before selecting the most appropriate agronomic
decisions. Implications. Given appropriate data on growing conditions and responses, our
methodology can be applied in other locations around the world, and to other crops.
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Introduction

In 2000 the total area of cotton harvested worldwide was estimated at 332 000 km2, with 
169 000 km2 rainfed (non-irrigated) and 163 000 km2 (or 49%) irrigated (Portmann et al. 
2010). The majority of cotton farm area is rainfed; however, the majority of cotton 
production is irrigated and reliably higher yielding. Although 65% of cotton area is 
rainfed in the USA, mostly in the humid south and south-east, in the arid western states, 
nearly all cotton production is irrigated (Cotton Incorporated 2022). In Australia’s 
Murray–Darling Basin (home to 91% of the nation’s cotton area), ‘[irrigated] cotton is 
generally more profitable than alternative crops such as grain sorghum, wheat and 
oilseeds : : :  (therefore) : : :  cotton producers tend to base their cotton planting decisions 
on the volume of [irrigation] water they have available and are less responsive to 
changes in cotton prices’ (Ashton 2019). 

In the semi-arid southern parts of Australia, most cotton is irrigated and limited by the 
amounts of river water available. However, from northern New South Wales (NSW) to 
central Queensland (Qld), rainfed cotton can often be successful. The International 
Cotton Advisory Committee (ICAC) reported that in 2020–21 Australia’s total cotton 
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production from 297 000 ha gave an average yield 
of 2047 kg/ha (~9 bales/ha, where a bale is 227 kg lint, 
the standard used for marketing Australian cotton), which 
was among the highest yields in the world (ICAC 2022). 
In 2017–18 there were 1436 farms growing cotton in 
Australia (across 346 000 ha); 66% of these farms were in 
NSW and 33% in Qld, producing an estimated 4.6 million 
bales valued at AU$2.3 billion. Rainfed cotton is largely 
grown in the 400–800 mm summer-rainfall zone in 
Australia (Cotton Australia 2018; ABARES 2020). Cotton 
Australia (2018) reported that 8% of the cotton production 
was rainfed, yielding 1.34 bales/ha on average. Bange 
et al. (2010b) reported that the area of rainfed cotton in 
Australia varies from 5000 ha to 120 000 ha, depending on 
the year’s commodity prices, soil moisture levels and rainfall. 

Recently, rainfed cotton production has expanded, partly 
due to improved varietal choices and partly in response to 
high prices and thus increased profitability with cotton 
cropping compared with alternative summer crops such as 
sorghum. Continued expansion into new areas is expected, 
plus greater inclusion of opportunistic rainfed cotton into 
cropping rotations, to take advantage of favourable seasonal 
conditions (CSD 2015; Bange 2018). However, Australia is 
placed high on the risk spectrum for cotton production owing 
to wide variations in both local rainfall and international 
commodity prices from year to year (Kimura et al. 2010). 
Bange (2018) also highlighted rainfall as a major risk and 
used simulations to estimate potential crop yields. Assessing 
farm financial viability helps farmers to make informed 
decisions with a fuller awareness of the potential risks to 
their business (Kimura and Antón 2011). 

Previous Australian studies, including field experiments and 
simulation analyses, found notable year-to-year variability 
in rainfed cotton yields. Several factors influence this yield 
variability, including stored soil moisture at planting time, 
in-season rainfall, and temperature during the cotton growing 
season (Turner et al. 1986; Bange et al. 2005; Bange et al. 
2010a; CSD 2015). The primary strategy available to growers 
to maximise potential yield in rainfed cotton is to plant with 
sufficient soil moisture, which increases the chance of 
attaining yields that can cover costs (for profit) and reduces 
the risks of complete crop failure. Furthermore, variability 
in rainfall and temperature during the growing season have 
marked impacts on crop growth, development and yield 
(Porter and Semenov 2005; Archontoulis and Miguez 2015). 

Risk-analysis reports for rainfed cotton, that combine 
considerations of risks associated with variability in both 
economic factors and climate for different management 
strategies, are scarce in Australia. Several examples can be 
noted. Powell and Scott (2011) described whole-farm risk 
profiles for a representative mixed farm of wheat, grain 
legumes, grazing cattle, and 100 ha of irrigated cotton in 
the lower Namoi Valley, NSW. Luo et al. (2017) reported a 
bioeconomic simulation study on the economic risks of 
adaptation options in the Australian cotton industry, given 

the temperature and rainfall regimes projected with climate 
change by 2030. That study considered irrigated crops at 
three locations, Dalby (Qld), Narrabri (NSW) and Hillston 
(NSW), and dryland crops only at the Dalby and Narrabri 
sites. Adaptations considered included changes to earlier and 
later planting dates, row configurations, irrigation triggers, 
and the inclusion of one fallow season with each of the two 
cotton seasons compared with continuous cotton. Irrigated 
cotton was projected to gain <10% in gross margins (GMs) 
from early planting at Hillston, <5% at Narrabri, and not at 
all at Dalby, whereas Dalby GMs at the normal planting 
date were expected to improve >10% with climate change. 
Godfrey et al. (2019) compared the whole-farm economics 
of two rainfed cotton farms in Gunnedah (NSW) and Dalby 
to show the impacts of debt based on price and yield 
variations. 

Cotton crop growth and development are complicated by 
indeterminate habit. Vegetative growth and reproductive 
growth occur simultaneously, the plant adding or dropping 
fruiting structures according to water and temperature 
conditions (Bange et al. 2016). Crop simulation technologies 
have been used to capture these effects in cotton and assist 
with crop management decisions. 

In the present study, the simulation tool OZCOT 
(Hearn 1994) was used to capture the effects of crop manage-
ment and environment on yield. The OZCOT model is 
mechanistic, simulating the growth, development and lint 
yield on an area basis, calculated on daily timestep with 
the inputs of climate, soil, cotton crop management and 
cultivar coefficients. 

The simulated yields and historical price were combined 
through copula methods to simulate the economic prospects 
of rainfed cotton at six locations across NSW and Qld (Fig. 1). 
In simulation studies where more than one variable is 
considered, it is important to consider both their distribu-
tions and the possibly non-linear dependency between 
these variables (Wall 1997). Although the Pearson correla-
tion coefficient and multivariate normal distributions are 
commonly used, there are limitations in using these methods. 
In particular, the former assumes linearly dependent 
relationships between the variables, and the latter assumes 
that all individual variables follow the normal distribution. 
In reality, the relationship between variables may be non-
linear or asymmetric and may exhibit other complicated 
dependency structures. Also, the individual probability 
distributions are often asymmetric, skewed or non-normal, 
and are not the same across all variables. The copula 
method, which stems from Sklar’s theorem (Sklar 1959), is 
a flexible tool that can handle all of the aforementioned 
scenarios (Nelsen 2006; Charpentier and Segers 2007). 
Copula-based methods have been widely used in finance 
(Genest et al. 2009) and have made their way into 
agricultural settings more recently (Hardaker et al. 2015). 
For example, Nguyen-Huy et al. (2018) used copula 
methods to obtain the conditional value-at-risk for a 

1224



www.publish.csiro.au/cp Crop & Pasture Science

Fig. 1. Six rainfed cotton sites in eastern Australia: Emerald, Dalby and Bungunya (near
Goondiwindi) in Queensland, and Moree, Wee Waa and Gunnedah in New South Wales
(NSW). Source: city and border data spatial from 2019 Esri Data & Maps.

wheat-farming portfolio, and Ji et al. (2018) modelled the 
time-varying dependence structure between energy and agri-
cultural commodity markets through copulas (see Methods: 
Technical note on copula for more details). 

These probabilistic yields and GM results were 
investigated under different combinations of management 
options (sowing date and row configuration) under 
location-specific ranges of weather conditions and prices, 
and three starting plant-available water (PAW) levels. 

Unlike previous studies, this work adds an additional 
layer of variability in price of cotton and costs associated 
with production (urea in particular), which can help with 
identifying those practices that are most robust when price 
is still an unknown. Given appropriate historical data on 
weather, costs and prices, this new approach can be applied 
to cotton and other crops in many parts of the world, 
assuming that the crop growth can be adequately modelled in 
software such as OZCOT for cotton (Hearn 1994), AquaCrop 
(Vanuytrecht et al. 2014) or APSIM (Holzworth et al. 2014). 

This study provides: (1) an overview of the simulated 
yields in the six regions based on long historic, location 
specific, weather sequences; (2) statistical effects based on 
the interactions of these conditions (location and starting 

PAW levels) and agronomic choices; and (3) the combined 
economic impacts of these practices associated with 
variability in yield, cost and price, that is, the magnitudes 
and frequencies of positive and negative GMs achieved 
through recent history. Depending on the season, the farmer 
can adjust the sowing date and planting-row configuration to 
best match the conditions at hand. Historical weather records 
allow the simulation of distributions of cotton lint yields 
per hectare, given starting soil PAW (100%, 50% or 30%) 
for each combination of sowing date and row configuration 
that the farmer might choose. When combined with yield, 
the price and cost variations can be used to determine the 
distributions of GMs per hectare. 

Methods

Sites

Six typical rainfed cotton production sites in Australia, 
encompassing a range of climatic conditions, were selected 
for analysis (Table 1, Fig. 1). Rainfall and temperature 
patched-point data from 1945 to 2020 (76 years) for these 
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Table 1. Site descriptions with soil types (Isbell 2016), plant-available water capacity (PAWC) at 150–180 mm soil depth, and long-term average
(1945–2020) rainfall and temperature.

Location Latitude and
longitude

Soil type PAWC (mm) Rainfall (mm)

Annual Oct.–Feb.

Oct.–Feb. temperature (°C)

Max. Min.

Emerald (Qld) 23°30 00″S,
148°9 00″E

Vertosol 287 618 (36%) 393 (40%) 33.5 (3.27%) 20.0 (3.31%)

Dalby (Qld) 27°9 040″S,
151°15 047″E

Vertosol 285 626 (25%) 372 (35%) 30.6 (3.83%) 16.6 (3.89%)

Bungunya (Qld) 28°25 041″S,
149°39 011″E

Sodosol 166 538 (28%) 295 (42%) 32.4 (3.91%) 18.1 (4.35%)

Moree (NSW) 29°30 00″S,
149°54 00″E

Vertosol 214 593 (28%) 327 (42%) 31.5 (4.27%) 17.2 (5.52)

Wee Waa (NSW) 30°12 029″S,
149°35 049″E

Vertosol 251 601 (29%) 328 (42%) 31.8 (1.30%) 16.8 (5.31%)

Gunnedah (NSW) 30°59 02″S,
150°15 014″E

Vertosol 207 648 (26%) 356 (37%) 30.3 (4.25%) 16.0 (5.43%)

Details of agronomic management of cotton used in the simulation are provided below in Simulation treatment. Coefficient of variation (%) in parentheses.

sites were obtained from SILO climate data systems (Jeffrey 
et al. 2001). These sites are semi-arid with summer-dominant 
rainfall, receiving an average of 295–393 mm during the 
cotton growing season (October–February). Across these sites 
and through the cotton growing season, the average minimum 
and maximum temperature ranges were 16.0–20.0°C and  
30.3–33.5°C, respectively. The soils across the sites (Table 1) 
are predominantly Vertosols (SOILpak 1998) according  to  
the Australian Soil Classification system (Isbell 2016), with 
varied PAW holding capacity (PAWC; see Dalgliesh et al. 
2016) of  166–287 mm, to a total soil depth of 1.2 m. 

Cotton biophysical modelling

The central component of the OZCOT model is the fruit 
production and survival subroutine (Hearn and Da Roza 
1985). The rates of fruit production, fruit shedding and 
growth of the organs are governed by carbon supply. Carbon 
supply for a given day is estimated from intercepted light and 
crop level photosynthetic rate with respiration deducted. 
Light interception is estimated, and leaf area generated using 
an empirical correlation between fruiting site production and 
leaf area. The leaf expansion rate, photosynthesis and fruiting 
are modulated by the water supply and nitrogen. The water 
balance uses a simple moisture extraction routine based 
on increasing supply with increasing depth of extraction 
over time (Ritchie 1972). Modifications to the OZCOT model 
to simulate rainfed skip cotton production systems are 
described in Milroy et al. (2004). The OZCOT model has 
been independently validated against field measurements 
(Carberry and Bange 1998; Milroy et al. 2004; Bange et al. 
2005; Richards et al. 2008; Conaty et al. 2018; Darbyshire 
et al. 2020) for both rainfed and irrigated cotton crops 
(including commercial crops), and cotton simulations have 
been tested, and were found to be representative, at several 
sites, including those chosen for investigation in this study 

(Roth 2010; Roth et al. 2013; Yang et al. 2014; Williams 
et al. 2015; Luo et al. 2017; Anwar et al. 2020; Darbyshire 
et al. 2020; CRDC and CottonInfo 2022). In addition, OZCOT 
is the same cotton model used in the APSIM crop simulation 
platform (Holzworth et al. 2014), which has been shown to 
represent growth and yield processes of cotton accurately 
under various water conditions (Shukr et al. 2021). 

Simulation experiment

In order to establish the OZCOT model input data, a factorial 
simulation setup was developed. Representative data for 
soil parameters, including PAWC at 150–180 cm soil depth 
in increments of 10–15 cm for each site, were obtained 
from the APSoil database (Dalgliesh et al. 2009). The factorial 
design comprised six rainfed cotton growing sites, four 
sowing dates (30 September, 15 October, 30 October, 15 
November), three starting soil water conditions (30% PAW 
as low, 50% PAW as medium, 100% PAW as high), and 
three planting-row configurations (solid, single skip, double 
skip) (Fig. 2), resulting in 36 combinations at each site. 
Cotton is grown on rows spaced 1 m apart. Solid planting is 
where seeds are sown in every row (100% of area planted), 
‘single skip is where every third row is not planted (66% of 
area planted), and double skip is where every third and 
fourth row is not planted (50% area planted). The reduced 
planting density from using skip rows is used to improve 
penetration of both sunlight and chemical sprays, and 
increase access to inter-row soil water by plant roots (where 
rainfall is expected to be limiting) (Bange et al. 2005). For 
each factorial combination, the OZCOT model was run using 
76 years (1945–2020) of historical weather data (Jeffrey 
et al. 2001). The model was reset each year at 1 week 
before the sowing date. By implementing this approach, the 
yield response for each year was restricted to in-crop 
season conditions only, and carry-over effects from soil 
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Interrow spacing: 1 m 
Row configuration: 

Solid 
(100% of planted area) 

Single skip 
(66% of planted area) 

Double skip 
(50% of planted area) 

Fig. 2. Illustration of the three row configurations applied inOZCOT
to simulate rainfed cotton production. Dotted lines represent
skipped rows.

water and nutrient conditions from previous seasons were 
excluded. Starting soil nitrogen (N) was set at 150 kg/ha. 
Based on current on-farm practice, N fertiliser (50 kg N/ha) 
was ‘applied’ as urea at planting. A high-yielding modern 
cultivar with mid to late maturity and the high fruit retention 
associated with transgenic cultivars with high levels of insect 
and pest protection was used in this simulation study. 

Statistical analyses

A regression analysis was performed to identify the key 
factors that affect the yield outcomes. The simulated yields 
from OZCOT were considered as the response variable, and 
the agronomic practices (sowing date, row configuration 
and starting PAW) and location (site) were treated as fixed 
effects in the model. Interactions between the explanatory 
variables, except site, were allowed up to the third order. The 
combination of Emerald (site), 30 September (sowing date), 
solid (row configuration) and 30% (starting PAW) was 
chosen as the reference level against which the other factor 
combinations were compared. Different levels within each 
factor were compared using Tukey’s post hoc approach at 
the P = 0.05 family-wise error rate. Regression analysis was 
conducted using R (R Core Team 2020). Several R packages 
were used during data preparation, analysis and visualisation, 
including: tidyverse (Wickham et al. 2019) and ggplot2 
(Wickham 2016). 

Gross margin budgets

Gross margins were calculated as ‘enterprise’ income (i.e. 
cotton crop sales) less variable costs (Malcolm et al. 2005). 

Incomes were derived by multiplying cotton bale prices 
by simulated crop yields. Probabilistic GM budgets for all 
six sites were generated using a multivariate distribution 
estimated from the historical price, simulated yield and cost 
of applied urea. The data inputs for the copula analysis 
comprised more than seven decades (76 years) of yields 
(no. of bales/ha) from 1945 to 2020, and 35 years of 
varying annual average cotton bale prices (AU$/bale, 
where 1 bale = 227 kg lint) and urea prices ($/kg) from 
1984–85 to 2018–19 (ABARES 2019). The univariate 
distribution for each of these three key input variables was 
chosen using the Akaike information criterion (AIC), and the 
parameters were estimated using the maximum likelihood 
method (Hardaker et al. 2015; Palisade Corporation 2021). 
The two price and cost variables were deflated to the 
base year of 2018–19. All other costs for solid, single skip 
and double skip planting configuration were taken from 
the GM budget estimates for the financial year 2018–19 
reported in CottonInfo (2018); see Table 2 for further 
details. A proportional cost was allocated to the solid row 
configuration. Cotton price adjustments for fibre quality 
discounts were made for the solid ($135/bale) and single 
skip ($25/bale) row configurations (Bange et al. 2005). 

After fitting the individual distributions of cotton price and 
yield, the joint distribution in the form of a copula was also 
estimated, which was then used to simulate both yields and 
prices with their dependencies considered. For each risk-
management scenario, the model was run over 10 000 
iterations of Monte Carlo simulation. The GMs calculated 
from these iterations were used to derive the distributions 
of the GMs for further comparisons. A similar approach was 
adopted in Godfrey et al. (2021, 2022). All computational 
steps to derive GMs were performed using @Risk 8.2 software 
(Palisade Corporation 2021). 

Technical note on copula

In this study, we treated yield and price as two correlated 
random variables. Simulation of jointly distributed variables 
was facilitated by using the copula approach. Such an 
approach is relatively new in agricultural studies; therefore, 
a brief overview is provided here. In order to capture the 
co-movement of two variables in simulations, the bivariate 
distribution needs to be estimated. Sklar’s theorem states 
that there exist functions called copulas such that all bivariate 
distributions can be represented as a copula of their univariate 
distributions (Shemyakin and Kniazev 2017). For example, 
one could combine two variables, where one follows the 
uniform distribution and the other follows the normal 
distribution, by using a copula. The allowance of separate 
estimations for the marginal and joint distributions is 
considered a main advantage of using copulas (Genest and 
Favre 2007; Bouri et al. 2018). 

Different types of copula models have been derived. 
Popular ones include the Gaussian, Student’s t, Gumbel, 
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Table 2. Estimates of 2018–19 dryland cotton gross margin budget (GM).

Real Price Australian gin-gate return (AU$/bale) (distributions bounded by copula)A

Yield (no. of bales/ha): OZCOT simulated data from 1945 to 2020 (distributions
bounded by copula)B

Simulated from fitted distributions and copula
(refer to Figs 4, 5). The two variables of price and
yield multiplied together gave revenue for each
site–tactical decision and accounted for price and
production variability for each location.

Variable costs by operationC Solid Single skip Double skip

Fertiliser applied: nutrition urea (50 kg N)
(Real Price ($/kg) × fertiliser applied (50 kg))D

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

90.0% 5.0% 
0.546 1.124Real urea price ($/kg) 

Uniform 

Minimum 0.51395 
Maximum 1.15589 
Mean 0.83492 
Median 0.83492 
Std Dev 0.18531 
10% 0.57814 
25% 0.67444 
75% 0.99541 
90% 1.09170 

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2 

Price simulated according to a uniform distribution bounded
between $0.546 and $1.124/kg, and is further multiped by
50 kg urea applied/haE

Fallow management ($/ha) 73 73 73

Planting and in-crop farming ($/ha) 110 87 69

Crop protection, application and licence fee ($/ha) 432 395 361

Defoliation ($/ha) 196 141 102

Picking (cartage + cartage and ginning costs/rows excluded) ($/ha) 366 332 301

Farming: post-crop ($/ha) 47 47 47

Insurance ($/ha) 101 90 80

Fibre length discount ($/ha) 135 25 0

Total variable cost (actual cost varies owing to randomness of the price of urea) ($/ha) 1459 1190 1032

Source: modified from Powell et al. (2020)
AABARES Real Price Australian gin-gate return (AU$/bale): data taken from 1984–85 to 2018−19. 2018−19 was used as base year to convert nominal prices to real.
Price combined ABARES lint yield Qld and NSW (t/ha) for the same period using copula functions to capture the dependency structures among these two variables.
BLint was converted to no. bales/ha. We assumed that the cotton farm has a ‘gin for seed’ contract; hence, no dollar value was allocated to cotton seeds. Ginning and
cartage costs were not considered because these are almost the same as the proceeds from the sale of cotton seed and so are offset. We also assumed that lint quality
was uniform and that no dockages (discounts) were made for quality.
CVariable cost of solid planting was based on the proportional cost of of single skip to double skip planting. For example, the cost of single-skip planting and in-crop
farming was 1.27 times the double skip. Therefore $87 × 1.27 = $110.
DABARES Real Urea Price ($/kg): data taken from 1984−85 to 2018−19. 2018−19 was used as base year to convert nominal price to real. 2013−14 onwards missing
data sourced from Index Mundi. Nutrition replaced in Powell et al. (2020) GM budget.
ETo view the above figure in colour, please see the online version of this journal.

Clayton and Frank copulas (Patton 2012). Among these, the 
Frank copula, which will be presented in the Results, admits 
the form (Hove et al. 2017): 

� �
1 ðe−θu − 1Þðe−θv − 1Þ

C uð ,v; θÞ = − ln 1 + 
θ ðe−θ − 1Þ 

where θ ≠ 0 is a parameter to be estimated from the observed 
pair of variables u and v. Hove et al. (2017) showed that θ is 
related to the rank correlation between u and v. Practically, 
analysts must rely on software to estimate the copula 

parameter(s) and select the copula type that best fit the 
data. To improve the flexibility, it is common to consider 
‘rotated’ copulas where one axis is rotated by 180° to allow 
negative correlations or even more sophisticated dependency 
structures such as asymmetric tail dependence (Wali et al. 
2018; Mensah and Adam 2020). Readers are referred to 
Nelsen (2006) and Hardaker et al. (2015) for more technical 
details regarding the copula approach. Some practical imple-
mentation details using @Risk can be found in Godfrey 
et al. (2022). 
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Results

From the farmer’s viewpoint, from the start, the following 
things are known for certain: the farm’s location, and accom-
panying soil and historical climate information. Another 
piece of information is important in forming a strategy for 
sowing rainfed cotton at a particular location: starting PAW 
at the sowing time. Given this information, it is then 
possible, using the results described below, to select one of 
the 12 combinations of management practices (sowing date 
and row configuration) that is likely to perform well on 
average (based on GMs per hectare) given the associated 
variability in yield, cost and price. At most locations, a wide 
variation in projected outcomes from the different combina-
tions of management practices is apparent. Each location is 
unique in responses owing to differences in latitude, altitude, 
rainfall, temperature and soil conditions. 

Cotton yields

All interaction effects between explanatory variables were not 
statistically significant at P = 0.05 and were removed from the 

final linear model. Table 3 depicts the results of analysis 
of variance and the estimated coefficients of the final model 
for cotton yield, and Fig. 3 shows the distributions of 
yields simulated from OZCOT at two selected locations 
(see Supplementary materials for other locations), under 
three starting PAW levels and 12 combinations of managerial 
practices formed from four sowing times and three row 
configurations. 

Considering all 216 combinations, the average annual 
cotton yield was 3.40 bales/ha. Median yield ranged 
from 1.39 to 5.46 bales/ha, standard deviation from 1.08 
to 2.54 bales/ha, and interquartile range from 1.35 to 
3.68 bales/ha. From Fig. 3 and Table 3, large site-to-site 
variations can be observed (P < 0.001). On average, Moree 
had the lowest yields, and Dalby had the highest yields, 
with an average difference of 1.50 bales/ha. 

Each individual factor significantly impacted the yield 
of cotton (all P < 0.001, Table 3). The third sowing date 
(30 October) tended to provide the highest yield, followed 
by the second sowing date (15 October) and then the latest 
one (15 November). The earliest sowing time (30 September) 

Table 3. Fitted model with estimated coefficients and analysis of variance of cotton yields (no. of bales/ha) across six sites.

SS d.f. F-statistic P Coefficient s.e. t-value P-value

Intercept 3.435 0.049 69.82 <0.001

Site 5673 5 371.18 <0.001

Emerald – – – –

Dalby 0.185 0.047 3.913 <0.001

Bungunya −1.275 0.047 −26.98 <0.001

Moree −1.310 0.047 −27.72 <0.001

Wee Waa −0.503 0.047 −10.64 <0.001

Gunnedah −0.974 0.047 −20.62 <0.001

Sowing time 50 3 5.4575 0.001

30 Sept. (a) – – – –

15 Oct. (b) 0.116 0.039 3.009 0.003

30 Oct. (b) 0.148 0.039 3.835 0.000

15 Nov. (ab) 0.097 0.039 2.511 0.012

Row configuration 94 2 15.372 <0.001

Solid (c) – – – –

Single skip (b) −0.070 0.033 −2.100 0.036

Double skip (a) −0.183 0.033 −5.494 <0.001

Starting PAW 4798 2 784.91 <0.001

Low (a) – – – –

Medium (b) 0.492 0.033 14.71 <0.001

High (c) 1.311 0.033 39.22 <0.001

Residual SS = 50 139 on 16 403 d.f.

Within sowing time, row configuration or starting PAW, levels followed by the same letter (in parentheses) are not significantly different based on Tukey’s post hoc
pairwise comparisons using the 5% family-wise error rate. The reference levels for site, sowing date, row configuration and starting PAW are Emerald, 30 September,
solid and 30%, respectively.
SS, sum of squares; d.f., degrees of freedom; s.e., standard error.
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10 

Sowing time 

Fig. 3. Two boxplot distributions (top, Dalby; bottom, Moree) shown for each combination of PAW, row configuration and sowing date.
Left (blue) boxplot represents rainfed cotton lint yields relative to the overall mean (dashed blue line, 3.40 bales/ha) across all six sites and
treatments. Right (red) boxplot represents gross margins (GM) relative to zero (solid red line). In each boxplot, the line in the middle of the
box represents the median value for the data, the upper edge of the box the 75th percentile, and the lower edge the 25th percentile. The
whiskers correspond to 1.5 times the interquartile range (difference between 75th and 25th percentiles) or to the most extreme observed
value, whichever is smallest. Crosses above or below the whiskers represent individual values outside of this range.

led to a significantly lower yield than both 15 October and All three row configurations provided significantly 
30 October (Table 3). Compared with the earliest sowing different effects on yields (Table 3). Solid row configura-
time, sowing on 15 October and 30 October provided an tion was estimated to provide extra yield of 0.07 and 
extra yield of 0.12 and 0.15 bales/ha, on average, respectively 0.18 bales/ha over single and double skip, respectively 
(Table 3). (Table 3). 
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Likewise, the three levels of starting PAW provided 
significantly different effects on yields (Table 3). High 
and medium starting PAW led to extra yield of 1.31 
and 0.49 bales/ha, respectively, over low starting PAW 
(Table 3). 

Considering yields alone, these results suggest that the 
combination of solid row configuration and sowing on 
30 October would be the best tactical option, regardless of 
the level of starting PAW. However, this option may not 
be the best from the profitability perspective, as illustrated 
later. 

Relationship between yield and prices

Uniform distributions provided the best fit for the Australian 
gin-gate return prices for cotton bales recorded in both 
Qld and NSW, whereas triangular distributions provided 
the best fit for  the lint yields (Figs 4, 5). Regarding the 
bivariate relationship between Australian gin-gate return 
prices and lint yields, the Frank copula with the vertical 
axis flipped (called ‘FrankRX copula’ in @Risk) provided 
the best fit the data according to the AIC evaluated by the 
software. The use of the FrankRX copula function suggests 
that the relationship between Australian gin-gate return 
price and lint yield was negative and exhibited symmetric 
dependence in both positive and negative tails (Hove 
et al. 2017). The estimated parameters (θ = 6.46 and 6.87 
in NSW and Qld, respectively) indicate that these two 
variables were moderately to strongly correlated (Genest 
1987; Escarela and Carriere 2003). The rank correlations 
of the two variables were −0.72 and −0.79 in NSW and 
Qld, respectively. The red crosses on the top panels of 
Figs 4 and 5 present the sample simulated values (before 
transforming back to the original scales) based on the 
fitted copula. These were used to calculate the GMs as 
reported in the next part. Because all Australian cotton is 
sold on the world market, it is bound up in the scenario of 
low prices when world production and stocks are high, 
and higher prices when world production and stocks 
are low. 

Gross margins

The GM distributions for all 36 combinations of factors for 
Dalby and Moree are given in Fig. 3 alongside the yields. 
Supplementary Fig. S1 shows the distributions for the other 
four locations. Across all 216 combinations of factors, the 
average GM was $1118/ha. Median GM ranged from 
−$310/ha (i.e. a loss) to $2659/ha, standard deviations 
from $610/ha to $1674/ha, and interquartile ranges from 
$763/ha to $2636/ha. 

From Figs 3 and S1, it can be seen that higher levels of yield 
often led to higher GMs. Although there was a negative 
relationship between price and yield, these were multiplied 
together to form the revenue. A higher GM is possible when 

the increment in yield could compensate the decrement 
in price. Nevertheless, the increase in variabilities in GM 
compared with the yields is noteworthy, and is expected 
because these include variabilities in price and cost. Across 
all 216 combinations, the median coefficient of variation 
(CV%) for GM was 94% whereas that for yield was 54%. 
There was also extra variability in GM at higher yield 
combinations, which may be a result of the local price 
being negatively correlated with local yield. Thus, a positive 
yield may not mean a worthwhile investment. In fact, 
considering yield alone could seriously underestimate the 
risk involved. At lower yields, these effects will result in 
less overall variability in GM. 

From Figs 3 and S1, large variations across the locations 
were observed. The most beneficial (depending on different 
criteria) combinations of starting PAW, row configuration 
and sowing date at each site are shown in Table 4. More 
detailed summary statistics can be found in Table S1. 
Although the combination of solid row configuration and 
sowing on 30 October tended to provide the highest yield, 
such a combination is never projected to provide the highest 
mean or median GM across all sites and starting PAW 
(Table 4). In fact, Table 4 also shows that single and double 
skip were found to provide a higher mean or median GM 
than solid row configuration in many scenarios. In most cases, 
double skip was found to be a more resilient strategy in 
terms of minimising the ‘lower tail’ risk using either the 
fifth percentile or the percentage of negative GMs as a 
measure. 

At all locations, it is no surprise that the probability of 
obtaining positive GMs was the lowest with low starting 
PAW, and highest with high PAW (Table 4). At Bungunya 
and Moree, when the starting PAW was low, negative GMs 
were projected in at least one-third of instances, even with 
the best management practice. At the Emerald and Dalby, 
there were still good chances of getting a positive GM even 
with a low starting PAW, most likely associated with higher 
summer-dominant rainfall. Below we demonstrate how the 
distributions of GM provided in Fig. 3 and the statistics in 
Table 4 can be used jointly to obtain some site-specific 
features. 

At Dalby, Qld, double-skip row configuration and sowing 
on 30 October tended to give the highest median GM with 
all three starting PAW levels (Fig. 3). When the starting 
PAW was high, such a strategy never resulted in a negative 
GM based on simulation results. Of course, this does not 
apply to standing flood conditions, which destroy crops 
however they are spaced. When the starting PAW is either 
medium or low, double-skip row configuration and sowing 
on 15 November tended to be least risky. 

At Moree, NSW, when the starting PAW was low, 
the chance of having a positive GM was sometimes less 
than half, especially when solid row configuration was used 
(Fig. 3). Single-skip row configuration and late sowing 
(30 October or 15 November) gave the highest chance of 
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having positive GMs under all three levels of starting 
PAW (Table 4). These combinations also tended to result 
in the highest mean and median GMs under low and 
medium starting PAW (Fig. 3, Table 4). However, under 
high starting PAW, solid row configuration and sowing on 
30 September was the best option for achieving the highest 
mean or median GM. 

Discussion

Farmers know the specific characteristic soils and historical 
climate variabilities of their location. Farmers can also 
measure or judge the PAW status of a field before sowing. 
Given these conditions, the farmer may then use the data 
published here to choose a combination of sowing date and 

Fig. 4. Top panel: observed (blue circles) and fitted (red crosses) bivariate relationship between Australian gin-gate return in real terms and
lint yield from 1984–85 to 2018–19 inQueensland. The fitted data were simulated based on the FrankRX copula that was used to generate the
gross margins. The data are presented in a standardisedway on a 0–1 scale. The red and blue text boxes show the percentages of the values (of
each variable) present in each quadrant of the graph. Bottom panel: observed (blue bars) and fitted (red line) univariate distributions for
Australian gin-gate return (left) and lint yield (right) in Queensland used as inputs in fitting the copula.

S. S. Godfrey et al. Crop & Pasture Science
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row configuration (solid, single skip, or double skip) in order 
to maximise the probability of growing a profitable crop, as 
summarised in Figs 3 and S1, and Tables 4 and S1. 

As with other investors, different farmers have different 
attitudes towards risk (Iyer et al. 2020). Some may prefer 
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taking a higher risk if the potential profit is higher, whereas 
others prefer a less risky option. Table S1 provides various 
summary statistics of the GM distributions, which can be used 
to conduct further analyses based on some desired criteria such 
as highest mean GM or lowest chance of having a negative GM. 

Fig. 5. Top panel: observed (blue circles) and fitted (red crosses) bivariate relationship between Australian gin-gate return in real terms
and lint yield from 1984–85 to 2018–19 in New SouthWales. The fitted data were simulated based on the FrankRX copula that was used to
generate the gross margin. Data are presented in a standardised way on a 0–1 scale. The red and blue text boxes show the percentages of the
values (of each variable) present in each quadrant of the graph. Bottom panel: observed (blue bars) and fitted (red line) univariate
distributions for Australian gin-gate return (left) and lint yield (right) in New South Wales used as inputs in fitting the copula.
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Table 4. Best chance row configurations and sowing dates under three levels of starting plant-available water (PAW) for the highest mean, median
and fifth percentile gross margin (GM) and the lowest percentage of negative GM at six locations.

High starting PAW Medium starting PAW Low starting PAW

Site Row Sowing Mean Row Sowing Mean Row Sowing Mean
configuration date ($'000/ha) configuration date ($'000/ha) configuration date ($'000/ha)

Highest mean GMs

Emerald Single skip 15 Oct. 2.44 Single skip 15 Nov. 1.69 Double skip 15 Nov. 1.26

Dalby Double skip 30 Oct. 2.68 Double skip 30 Sept. 1.91 Double skip 30 Sept. 1.42

Bungunya Double skip 15 Nov. 1.74 Double skip 30 Oct. 0.85 Solid 15 Nov. 0.40

Moree Solid 30 Sept. 1.48 Single skip 30 Oct. 0.78 Single skip 15 Nov. 0.49

Wee Waa Single skip 30 Oct. 2.13 Single skip 30 Sept. 1.27 Single skip 30 Sept. 0.92

Gunnedah Double skip 15 Oct. 1.59 Double skip 30 Sept. 1.23 Double skip 30 Sept. 1.14

High starting PAW Medium starting PAW Low starting PAW

Site Row Sowing Median Row Sowing Median Row Sowing Median
configuration date ($'000/ha) configuration date ($'000/ha) configuration date ($'000/ha)

Highest median GMs

Emerald Single skip 15 Oct. 2.40 Single skip 15 Nov. 1.72 Double skip 15 Nov. 1.24

Dalby Double skip 30 Oct. 2.66 Double skip 30 Oct. 1.90 Double skip 30 Oct. 1.42

Bungunya Double skip 15 Nov. 1.75 Double skip 30 Oct. 0.79 Solid 15 Nov. 0.32

Moree Solid 30 Sept. 1.37 Single skip 30 Oct. 0.72 Single skip 15 Nov. 0.41

Wee Waa Single skip 30 Oct. 2.04 Single skip 30 Sept. 1.15 Single skip 30 Sept. 0.82

Gunnedah Double skip 15 Oct. 1.64 Double skip 30 Sept. 1.23 Double skip 30 Sept. 1.25

High starting PAW Medium starting PAW Low starting PAW

Site Row Sowing 5th percentile Row Sowing 5th percentile Row Sowing 5th percentile
configuration date ($'000/ha) configuration date ($'000/ha) configuration date ($'000/ha)

Highest fifth-percentile GMs

Emerald Single skip 15 Oct. 1.35 Double skip 30 Oct. 0.03 Double skip 15 Nov. −0.23

Dalby Double skip 30 Oct. 1.59 Double skip 15 Nov. 0.55 Double skip 15 Nov. −0.09

Bungunya Double skip 15 Nov. 0.66 Double skip 30 Sept. −0.42 Double skip 30 Sept. −0.80

Moree Single skip 15 Nov. 0.34 Single skip 30 Sept. −0.59 Single skip 15 Nov. −0.78

Wee Waa Double skip 15 Oct. 0.84 Double skip 30 Sept. −0.32 Double skip 30 Oct. −0.71

Gunnedah Double skip 15 Oct. 0.43 Double skip 30 Oct. −0.21 Double skip 30 Oct. −0.40

High starting PAW Medium starting PAW Low starting PAW

Site Row Sowing Percentage Row Sowing Percentage Row Sowing Percentage
configuration date configuration date configuration date

Lowest percentage of negative GMsA

Emerald Single skip 15 Oct. 0.00 Double skip 30 Oct. 4.70 Double skip 15 Nov. 8.30

Dalby Double skip 30 Oct. 0.00 Double skip 15 Nov. 0.10 Double skip 15 Nov. 7.10

Bungunya Double skip 15 Nov. 0.00 Double skip 30 Oct. 16.8 Double skip 15 Oct. 38.7

Moree Single skip 15 Nov. 0.70 Single skip 30 Oct. 21.5 Single skip 15 Nov. 33.2

Wee Waa Double skip 15 Oct. 0.00 Double skip 30 Sept. 11.0 Single skip 30 Sept. 26.3

Gunnedah Single skip 15 Nov. 1.30 Double skip 30 Oct. 7.90 Double skip 30 Oct. 14.0

AWhen multiple combinations have the same minimum, the one that gives the highest mean GM is reported.

In this study the results for cotton crop yield were quite are always non-negative, meaning that a positive yield may 
different from the GMs in terms of means, medians and not mean a worthwhile investment. Hence, it is important 
variability. This is because GM can be negative while yields to consider rainfed cotton crops from the perspective of 
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GM. To our knowledge, data that shed light on this topic for 
rainfed cotton based on distributions coming from historical 
price and yield data and simulated based on their 
dependencies generated by copula have not been previously 
published. 

Given the inclusion of considerations of prices as well 
as yield, GMs are generally more variable than yield. 
Our results starkly contrast the likely outcomes of the two 
combined management factors decided by farmers (row 
configuration and sowing date) when given three starting 
PAW scenarios in the six farming areas, taking into account 
the known historical variations in weather and in cotton 
and input price variations over the long term (76 years 
for weather and 35 years for urea costs and cotton prices). 
The use of this information may help to shape selection of 
management options when there are different degrees of 
uncertainty involved. In this study, it was assumed that 
the three variables (urea costs, cotton prices and yields) 
were effectively unknown by the grower at the start of the 
cropping season. Further understanding is needed to assess 
how this information influences decision-making leading 
into a cotton season where choices of sowing time and 
configuration are available to the farmer. It may be that 
these analyses exclude management choices for a grower 
that are not options in any scenario. For example, a 
scenario such as a dry year with less than 10% PAW, which 
leaves rainfed cotton prospects so poorly that sowing 
cannot be recommended, is not covered in the present study. 
Therefore, as more information is known (such as cost and 
price/or price range), analyses can focus on a smaller set of 
management options allowing for simplicity in interpretation 
(fewer scenarios) plus more in-depth analysis of those 
scenarios that are important. Obviously, analysis should 
then generate GM distributions with the inclusion of known 
information. How these analyses are used for decision-
making in light of access to information sources will be a 
subject for further research. Further research will also seek 
to understand how these insights can be used to add value 
to the decision-making of growers, in contrast to more 
traditional approaches of assessing risk using predefined 
but limited combinations of price, cost and yield. 

Owing to technological advances and economies of scale, 
real cotton prices tend to be decreasing over time. It could 
be argued that the use of price data from 30 years ago 
might have inflated the overall expected price used in the 
analysis, because farmers today are unlikely to receive the 
high prices from 20 or 30 years ago. However, our propose 
is not to prepare management decisions for farmers in 
2023 or 2024, but to illustrate the sorts of variations that 
they face in the long term. For this purpose, the wider the 
variations, the clearer the big picture. The past 30 years of 
data have included many possibilities of price fluctuations 
including the Millennium Drought. Recent unexpected 
events, including the COVID-19 pandemic and the Ukraine-
Russian war have revealed how vulnerable the supply chain 

is, and how volatile the prices of energy and commodities 
can be. Therefore, we argue that it is important to include a 
wide range of prices in the model. Future research may 
seek to investigate the relationship between the crop yields 
at local sites and the total industrial supply, with the area 
planted considered. This may give an indication of how 
local cotton prices are affected by the overall Australian, or 
even international, cotton prices, which may better reflect 
the profitability at farm level. 

Throughout the simulation study, it was assumed that 
the total amount of N was not crop limiting (150 kg/ha 
starting, plus 50 kg/ha applied) for any of the locations. 
A direction for future research may be to start with different 
soil N levels and seek the optimal strategies for fertiliser 
applications. 

Of course, our analysis does not predict how these 
scenarios might have, or will be, changed by climate change. 
It is possible that the approaches used here are already captur-
ing these climate-change effects and producing appropriate 
outcomes reflecting changes over time. This topic will be 
also the subject of further research. 

Conclusion

Our probabilistic simulation model incorporated yield, price 
and cost uncertainty explicitly based on the distributions 
and historical relationship of these input variables in order 
to compare rainfed cotton yields and GMs within and 
across six locations to assist in business performance of these 
regions. The method used here is coming into practice in 
business and can be applied to other agricultural contexts. 
Long-term seasonal weather forecasting will likely continue 
to improve and add value to these analyses. Results and 
techniques presented in this paper may assist growers of 
rainfed cotton to manage risk in their enterprises. The 
challenge remains as to how to deliver this information to 
growers effectively. 

Supplementary material

Supplementary material is available online. 
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