
RESEARCH PAPER
https://doi.org/10.1071/CP22280

Modelling spatial and temporal correlation in multi-assessment
perennial crop variety selection trials using a multivariate
autoregressive model
J. De FaveriA,* , A. P. VerbylaA and R. A. CulvenorB

For full list of author affiliations and
declarations see end of paper

*Correspondence to:
J. De Faveri
The University of Queensland, Queensland
Alliance for Agriculture & Food Innovation
(QAAFI), Brisbane, Qld 4001, Australia
Email: j.defaveri@uq.edu.au

Handling Editor:
Davide Cammarano

Received: 11 August 2022
Accepted: 3 April 2023
Published: 10 May 2023

Cite this:
De Faveri J et al. (2023)
Crop & Pasture Science, 74(12), 1142–1155.
doi:10.1071/CP22280

© 2023 The Author(s) (or their
employer(s)). Published by
CSIRO Publishing.
This is an open access article distributed
under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0
International License (CC BY-NC-ND).

OPEN ACCESS

ABSTRACT

Context. Perennial crop variety selection trials are often conducted over several seasons or years.
These field trials often exhibit spatial correlation between plots. When data from multiple
assessment times are analysed, it is necessary to account for both spatial and temporal correlation.
A current approach is to use linear mixed models with separable spatial and temporal residual
covariance structures. A limitation of these separable models is that they assume the same spatial
correlation structure for each assessment time, which may not hold in practice. Aims. This study
aims to provide more flexible methods for modelling the spatio-temporal correlation in multi-
assessment perennial crop data, allowing for differing spatial parameters for each time, together
with modelling genetic effects over time. Methods. The paper investigates the suitability of
two-directional invariant multivariate autoregressive (2DIMVAR1) models for analysis of multi-
assessment perennial crop data. The analysis method is applied to persistence data from a pasture
breeding trial. Key results. The multivariate autoregressive spatio-temporal residual models are
a significant improvement on separable residual models under different genetic models. The paper
demonstrates how to fit themodels in practice using the softwareASReml-R.Conclusions. A flexible
modelling approach for multi-assessment perennial crop data is presented, allowing differing spatial
correlation parameters for each time. The models allow investigation into genotype × time
interactions, while optimally accounting for spatial and temporal correlation. Implications. The
models provide improvements on current approaches and hence will result in more accurate
genetic predictions in multi-assessment perennial crop variety selection trials.

Keywords: 2DIMVAR1, BLUP, genotype by environment interaction, linear mixed models,
multivariate autoregressive model, perennial crop variety selection, random regression, spatial
and temporal modelling, splines.

Introduction

Perennial crop variety selection (in perennial pasture, grains, horticulture or forestry crops) 
is usually based on field trial evaluation, often in trials that exhibit spatial trends and 
correlation between plots. Selection is also usually based on measurements taken at 
multiple assessment (harvest or observation) times during the life of the crop. Thus, the 
genetic or variety effects may change over assessment times and these effects may be 
correlated. In addition, for the most accurate variety selections to be made, the statistical 
analysis must account for the spatial variation and correlation within a trial and the 
temporal correlation between repeated measurements on the same plot or plant. Furthermore, 
the spatial correlation between plots may vary between the multiple assessment times and this 
may need to be allowed for in the statistical analysis (De Faveri 2013). 

The primary aim of these trials is selection of varieties. This usually involves treating the 
variety effects as random effects (Smith et al. 2005). The variety effects are likely to be 
related over time. There are two approaches to relating the repeated measurements on 
varieties over time. The first is to directly model the variance–covariance matrix of the 
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variety effects over time. The unstructured genetic covariance 
model may be used in some cases, whereas more parsimonious 
models such as the autoregressive or ante-dependence or 
factor analytic models (Smith et al. 2001) may be appropriate 
for modelling the genetic covariance structure for more 
observation times (Smith et al. 2007; De Faveri et al. 2015; 
Culvenor et al. 2017; Verbyla et al. 2021; Bally and De 
Faveri 2021). 

The second approach is to propose a model for the (usually 
smooth) trend for varieties over time. This also results in a 
variance–covariance matrix for variety effects. Often the aim 
is to model the genetic response over time to allow for predic-
tion at times other than assessment times and also to obtain a 
better insight into variety × time interactions (De Faveri et al. 
2015). A suitable model for estimating the genetic response 
over time is the random regression (or random coefficients) 
model (Laird and Ware 1982). 

Random regression models involve fitting regression 
coefficients on time (or other explanatory variables), for each 
variety, as random effects. This allows for variation between 
varieties in the shape of the response profile over time. 

Random regression models may be implemented via 
orthogonal, Legendre or cubic polynomials (Campbell et al. 
2018); however, they can also be implemented using more 
flexible bases such as splines, for example B splines (Meyer 
2005) or cubic smoothing splines (Verbyla et al. 1999; White 
et al. 1999; Huisman et al. 2002; DeGroot et al. 2003). Verbyla 
et al. (1999) implemented cubic smoothing spline random 
regression for modelling the unit effects in order to account 
for the temporal correlation between repeated assessments. 
De Faveri et al. (2015) implemented linear random regressions 
with an underlying cubic smoothing spline for the mean 
response for persistence over time in a lucerne breeding 
trial. De Faveri et al. (2023) extended this approach to the 
multi-environment (MET) situation. Verbyla and Verbyla 
(2009) used the cubic smoothing spline in modelling of 
lactation curves for dairy cattle and then used the area under 
the curve in an association study. 

Both approaches can provide a predictive model for variety 
effects over time. The first approach does so for each observed 
time and also other times if the variance–covariance model is 
‘smooth’; this is the approach used in geostatistics for instance 
where prediction across the spatial domain is important, for 
example using the Matérn function (Haskard et al. 2007). 

Although the variety effects are the primary aim, they may 
be masked by non-genetic effects; these include effects due to 
the design of the trial and residual effects due to spatial and 
temporal variation. Hence, it is important to model these 
non-genetic effects effectively. 

In the context of field trials for crops, Gilmour et al. (1997) 
introduced a spatial analysis approach for trials assessed at a 
single observation time, based on the linear mixed model that 
accounted for various sources of spatial variation, including 
local and global smooth trend and extraneous variation. In 
these models the local spatial correlation is typically modelled 

using a separable autoregressive process of order 1 in the row 
and column directions. 

The literature showing the effectiveness and improvement 
of spatial modelling using the approach of Gilmour et al. 
(1997) in annual crops or forestry with a single measurement 
time is widespread (Costa e Silva et al. 2001; Dutkowski et al. 
2002; Smith et al. 2005; Oakey et al. 2006; Welham et al. 
2010). 

In the case of perennial crops (e.g. perennial pasture crops; 
horticulture tree fruit and nut crops such as macadamia, 
apple, citrus and mango; other horticulture crops such as 
strawberry and pineapple; and forestry breeding with 
multiple measurements), there is the added complication of 
dealing with not only spatial correlation, but also spatially 
correlated repeated measurements over time. 

When variety selection data are based on multiple assess-
ment times, the statistical analysis methods need to account 
simultaneously for both spatial variation in the field and the 
temporal correlation between repeatedly measuring the same 
plot, plant or tree over time. The temporal correlation is likely 
to decrease with increasing time between assessments (Bjornsson 
1978; Diggle 1988). The residual variance is also likely to vary 
over time. Not accounting for this spatial and temporal 
correlation and spatio-temporal interaction may result in 
biased variety estimates. 

Optimal models for spatial and temporal modelling of 
longitudinal data in perennial crop variety trials are not 
widespread, and often simplistic models are implemented, 
such as simple repeatability models without spatial modelling 
(Smith et al. 1998, O’Connor et al. 2021), or univariate spatial 
modelling at individual timepoints, or longitudinal non-spatial 
modelling, for example using ante-dependence or spline 
models. De Resende et al. (2006) investigated and compared 
several of these different approaches for the spatial analysis of 
longitudinal data in perennial tea, showing the inadequacy 
of the simple repeatability model and the superiority of 
simultaneous longitudinal and spatial modelling. The full 
multivariate spatial model used by De Resende et al. (2006) 
was based on a linear mixed model with three-way (time by 
row by column) separable structured variance–covariance 
residual model. This approach was also implemented and 
extended in Smith et al. (2007), modelling sugarcane repeated 
measures variety selection data over two seasons, and 
De Faveri et al. (2015), modelling lucerne multi-harvest 
data over 10 timepoints. These separable residual models 
are an improvement on previous models; however, they are 
restrictive in that they assume common spatial parameters 
for each assessment time. 

Although the separable models are likely to be better than 
not at accounting for any spatial correlation between plots, 
the separability assumption may not hold in some cases. 
Spatial correlation is likely to change over time, especially 
when perennial crops are measured over multiple seasons 
with varying environmental conditions such as rainfall or 
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temperature, and also as the plants or trees are changing in 
age, development stage and size. 

De Faveri et al. (2017) introduced a more flexible residual 
variance–covariance model for analysis of multivariate data 
from field trials based on a multivariate autoregressive model 
of order 1. This model involves conditions to allow the process 
to be directionally invariant in the spatial dimensions. The 
resulting two-directional invariant multivariate autoregressive 
process of order 1 (2DIMVAR1) allows for differing spatial 
correlation parameters for each trait. De Faveri et al. (2017)  
applied the method to bivariate datasets in the combined 
analysis of yield and persistence at a single timepoint, where 
it outperformed the separable residual models in most cases. 

The aim of this paper is to demonstrate the suitability and 
improvement of the 2DIMVAR1 residual model for modelling 
spatio-temporal correlation in the analysis of multi-assessment 
perennial crop data in conjunction with modelling of genetic 
effects over time. Although the 2DIMVAR1 model has been 
implemented for bivariate multi-trait data at a single time-
point, this paper is the first application for the analysis of 
repeated measurement data over multiple times. Its novelty 
lies in being able to model simultaneously spatial and temporal 
correlation, allowing for differing spatial correlation parameters 
for each measurement time. It is also the first application 
integrated with random regression spline genetic models for 
modelling genetic responses over time. 

The method of analysis is applied to persistence data 
assessed over 5 years from a phalaris (Phalaris aquatica L.) 
perennial forage grass breeding trial. The models can be fitted 
using ASReml (Butler et al. 2017) in the R environment (R ver. 
4.1.0; R Core Team 2021). A major aim of this paper is to 
provide code for the analyses to enable the implementa-
tion of the methods and this code is provided in the 
Supplementary material. 

Materials and methods

Motivating data

The motivating dataset analysed in this paper comes from a 
perennial pasture grass variety selection trial conducted 
over 5 years (2009–13) by CSIRO (for complete details of the 
trial, see Culvenor et al. 2017). In this paper we investigate the 
analysis of a single site, namely B09, sown in 2009, near 
Beckom, NSW, Australia (34°15 059.65″S, 146°59 045.50″E; 
elevation 222 m a.m.s.l.; average annual rainfall 460 mm). 
The trial was conducted using a row–column design of eight 
rows by 15 columns, with four replicates and 30 varieties. Plot 
size was 4.5 m2 (5 m by 0.9 m). 

The varieties (lines) grown in the trial consisted of 29 
phalaris lines and one cocksfoot (Dactylis glomerata subsp. 
hispanica L.) cv. Kasbah, the latter included as a persistent 
control (Culvenor et al. 2017). Variety ID numbers follow 
those in Culvenor et al. (2017) and are presented in Table 1. 

Table 1. ID numbers for lines used in the study: line 25 is the control
cocksfoot Kasbah and others are phalaris lines.

No. Line

1 Northern retainer

2 Northern retainer MS

3 Northern

4 P × C

5 Sirocco retainer

6 CPI 19305

7 19305 Retainer

8 TamPWA F2

9 TamPWA F4

10 Sirocco

11 Perla Koleagrass

12 Atlas PG

13 Sirolan

14 Holdfast

15 Holdfast GT

16 Landmaster

17 Sirosa

18 Australian

19 Australian II

20 Accession CPI14697

21 Accession M91

22 Accession M170

23 Accession M196

24 Accession M225

25 Kasbah cocksfoot

26 Accession M241

27 Accession T39 selection

28 Accession S99

29 LD97

30 CPI 19315

The trait investigated in this paper is frequency of live plant 
base. Following the methodology of Lodge and Gleeson (1984) 
developed for measuring ‘frequency’ of lucerne stands, frequency 
was measured each winter in two 0.9 m2 fixed quadrats by 
counting the number of 0.1 m by 0.1 m cells containing live 
phalaris base and converting to a percentage. Data were 
collected annually at five timepoints (2009–13). Changes in 
frequency during the experiment were used to assess persis-
tence. The aim of the trial was variety selection based on 
persistence and relative to the Kasbah cocksfoot line. 

A plot of the raw frequency data over time for each 
replicate of each variety is given in Fig. 1. The variety profiles 
are relatively smooth over time and most varieties follow a 
similar trend. There are differences between individual plot 
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Fig. 1. Plot of raw frequency data for each variety over time (each line within a panel represents a replicate). Variety 25 is the Kasbah
cocksfoot control.

responses within a variety, with some plots having a higher 
frequency response over the course of the trial and others 
consistently lower. 

Statistical analyses

The phalaris frequency data was analysed using a multi-time 
analysis, similar to that in De Faveri et al. (2015) but with 
improved, novel spatio-temporal residual modelling. The 
variety effects were modelled over time accounting for any 
spatial and temporal correlation present. The analysis was 
based on a linear mixed model with estimation using residual 
maximum likelihood (REML). The analyses were performed 
in ASReml-R (Butler et al. 2017). 

A linear mixed model for the data y (combined across 
assessment times) may be written as: 

y = Xτ + Zgug + Zouo + e (1) 

where τ is a vector of fixed effects with design matrix X; ug is a 
vector of random variety (or genetic) effects for t individual 
assessment-time combinations, with design matrix Zg; uo is 
a vector of other non-genetic random effects (e.g. replicate 
effects) with design matrix Zo; and e is the vector of 
random residual effects. 

The random effects from the linear mixed model are 
assumed to follow a normal distribution with zero mean 
vector and variance–covariance matrix: 

The variance model for the random non-genetic effects is 
given by a block diagonal matrix Go. The variance matrix Gg

for the genetic effects (ug) across times may be represented by 
Gg = Gh ⊗ Im where Gh is the genetic variance matrix indexed 
by the times, and Im is the assumed structure for the varieties. 
Note that pedigree and/or genomic information could be 
included here, if available, to relate varieties via relationship 
matrices; see for example Oakey et al. (2006). 

Modelling genetic effects
Unstructured or factor analytic model. The genetic 
variance matrix Gh (which consists of genetic variances for 
each assessment time and genetic co-variances between 
assessment time combinations) may be modelled using a 
variety of approaches including unstructured or factor analytic 
models (Smith et al. 2001, 2015). In Smith et al. (2007), Gh is 
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modelled using an unstructured (US) matrix, but they note that 
factor analytic (FA) models may also be suitable. 

Random regression approach. An alternative approach for 
modelling the genetic effects over time is to use a random 
regression model. In this approach, the genotype deviations 
from the underlying mean trend over time are modelled. 
Often whilst the underlying mean trend may be non-linear, 
the genotype deviations may be linear over time (Evans and 
Roberts 1979), but they may vary over varieties. Because 
we are interested in selection of varieties, the intercept and 
slope of these deviation responses may be taken as random 
rather than fixed, similar to the basic quantitative genetics 
model in which genotype effects are taken as a random 
factor. If the genetic effects ug have components ug,ik for 
genotype i, time k (k = 1, : : : ,t), where the actual time is xk, 
a linear random regression model is: 

ug,ik = ui0 + ui1xk + ue,ik (2) 

where ui0 and ui1 are the random intercept and slopes for 
genotype i, and ue,ik is a residual deviation from the linear 
random regression, that is, a lack-of-fit term. The intercepts 
ui0 provide a prediction of performance at xk = 0, so 
typically the time variable is centred, so that the origin is at 
the midpoint, or average of the times. The slopes ui1 provide 
the rate of change of the effect of the genotype, and hence the 
speed at which the performance changes over time. 

This linear random regression model (2) may be extended 
to a polynomial random regression model to model non-linear 
trends, or alternatively, it may be preferable to use natural 
cubic splines (Verbyla et al. 1999) to provide a more 
flexible approach (De Faveri et al. 2015, 2023). 

A random regression model incorporating cubic smoothing 
splines, for ug,ik (the random effect for variety i at assessment k 
(k = 1, : : : ,t)) with xk denoting the time at assessment k, can be 
written as: 

ug,ik = ui0 + ui1xk + zTskusi + ue,ik (3) 

For each variety i, usi (a (t − 2) × 1 vector) is the random 
spline component of the mixed model formulation of the cubic 
smoothing spline (Verbyla et al. 1999). 

Modelling non-genetic effects
The residual covariance matrix R models the spatial 

correlation and temporal correlation between repeated measure-
ments. This residual covariance matrix has been modelled in this 
paper using two approaches, including: 

1. A three-way separable spatio-temporal process 
(De Resende et al. 2006; Smith et al. 2007; De Faveri et al. 
2015). Therefore, the structure is assumed to be: 

X X 
R = Rh ⊗ ⊗ 

c r 

where Rh is a covariance matrix that incorporates temporal 
correlation (between assessment times) and, possibly, 
heterogeneous variance across times, and Σc and Σr are the 
column and row local spatial correlation matrices, here 
taken as autoregressive models of order 1 (ar1) with spatial 
correlation parameters ϕr and ϕc in the row and column 
directions, respectively (Gilmour et al. 1997). In the analyses, 
the temporal covariance components (Rh) have been modelled 
using unstructured, heterogeneous autoregressive and ante-
dependence models (Gabriel 1962). In these analyses, the 
separable residual models assume the same spatial correlation 
parameters (ϕr and ϕc) for each assessment time. 

2. A two-directional invariant multivariate autoregressive 
of order 1 (2DIMVAR1) model (De Faveri et al. 2017), where 
eij, the multivariate error variable for row i and column j for t 
times is given by: 

e11 = ϵ11 

ei1 = Ωreði−1Þ1 + ϵi1, i = 2,3, . .  . ,r 

e1j = Ωce1ðj−1Þ + ϵ1j, j = 2,3, . . . ,c 

eij = Ωreði−1Þj + Ωceiðj−1Þ + Ωrceði−1Þðj−1Þ + ϵij, 

i = 2,3, . . . ,r; j = 2,3, . . . ,c 

where ϵ has zero-mean vector and ϵij are mutually 
independent vector variates, var(eij) = Σ, for all i and j, and 
Ωr and Ωc are t × t matrices of spatial dependence 
parameters in the row and column direction, respectively. 

It can be shown that under this model, R can be written 
as the sum of t terms, each the Kronecker product of two 
autoregressive models and a reduced rank factor analytic 
model: 

2 3 
ϕc−11 ϕcs . . .  cs 6 . . 7t X6 . . 7ϕcs 1 . . 6 7R = 6 . . . 7 4 . . . 5s = 1 . . . ϕcs 

ϕc−1 ϕc−2 . . .  1cs cs 2 3 
ϕr−11 ϕrs . . .  rs 6 . . 7 6 . . 7ϕrs 1 . . ⊗ pspsT6 7⊗ 76 . . . 4 . . . 5. . . ϕrs 

ϕr−1 ϕr−2 . . .  1rs rs 

This model allows for different spatial correlation 
parameters for each assessment time. 

Full details of the 2DIMVAR1 model can be found in 
De Faveri et al. (2017); in summary, the model fits a multi-
variate analogue of the first-order autoregressive spatial 
model in row and column directions ðar1ðColÞ ⊗ ar1ðRowÞÞ 
across times (t), with the spatial correlation parameters 
(ϕr and ϕc) replaced by t × t spatial matrices Ωr and Ωc. 
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The diagonal elements of Ωr give the spatial dependency para-
meters between neighbouring plots in the row direction at 
each time, while the off diagonals give the spatial dependency 
between neighbouring plots at different times, hence allowing 
for differing spatial correlation across the times (similarly for 
Ωc). These spatial dependency matrices are not correlation 
matrices and do not need to be symmetric. Together with a 
fully unstructured covariance matrix Σ (which models the 
temporal variance and covariances between times on each 
plot), the residual spatio-temporal process is modelled. 
Symmetry constraints on ΩrΣ and ΩcΣ (the spatio-temporal 
covariance matrices between neighbouring plots in the row 
and column directions, respectively) make the model 
directionally invariant in the row and column directions, so 
the full variance–covariance matrix is the same whether 
observations are ordered from left to right or from right to 
left along the rows or columns. 

To test the significance of random effects in the linear 
mixed model, the residual maximum likelihood ratio test 
(REMLRT) can be used. The REMLRT may be used to compare 
the fit of two models only if they are nested and contain the 
same fixed effects. The standard REMLRT statistic is asymp-
totically distributed as a chi-squared statistic with p1 − p0 

degrees of freedom. However, if the test involves a null 
hypothesis where the parameter is on the boundary of the 
parameter space, the REMLRT needs to be adjusted (see 
Stram and Lee 1994). 

To compare the goodness of fit of two models (with the 
same fixed effects) that may be non-nested, the Akaike infor-
mation criterion (AIC) may be used. The AIC value for a model 
is calculated as −2(l − p), where l is the residual log-likelihood 
for the model and p is the number of variance parameters in 

the model. To compare models with different fixed effects, an 
AIC based on the full likelihood may be used (Verbyla 2019). 
Models with smaller AIC values provide a better fit to the data 
than those with higher AIC values. 

Results

The analysis of frequency was based on the linear mixed 
model given in Eqn 1. A series of genetic and residual models 
was fitted to the data and results are presented in Table 2. In  
each analysis, the random experimental design terms for Rep, 
Row and Column for each year were included in the model. 

Initially a separate analysis at each time was conducted 
with a non-spatial model (M1). The residuals from this model 
are presented in Fig. 2, where it can be seen that the spatial 
pattern of residuals differs between assessment times. In 
addition to accounting for the trial design, the next model 
(M2) followed the spatial analysis approach of Gilmour et al. 
(1997) and Stefanova et al. (2009), including terms for extra-
neous and global trend and modelling local spatial correlation 
using a separable autoregressive process of order 1 in the row 
and column directions. 

Comparing results between model M1 and model M2 
clearly shows that accounting for the spatial correlation 
between plots results in a significant improvement (P < 0.001; 
REMLRT = 81.264 on 10 d.f.). This initial spatial analysis 
provides insight into the spatial correlation at each Year. 
The spatial correlation parameters and residual variances 
estimated for each assessment time from the initial single 
time analyses are given in Table 3. From these results, the 

Table 2. Summary of models fitted to the multi-assessment data with genetic model (G), residual model (R), other non-genetic random terms,
residual log-likelihoods (LL), and Akaike information criteria (AIC) values (based on full likelihood) for each Model.

Model Genetic model (G) Residual model (R) Other random terms LL AIC

M1 Diag(Year):Line id(Col) × id(Row) | Year At(Year): (Rep + Row + Col) −1741.564 3545.429

M2 Diag(Year):Line ar1(Col):ar1(Row)| Year At(Year): (Rep + Row + Col) −1700.932 3479.507

M3 Diag(Year):Line ar1(Col):ar1(Row)| Year At(Year): (Rep + Row + Col) + Plot −1603.266 3274.839

M4 Diag(Year):Line diag(Year):ar1(Col):ar1(Row) At(Year): (Rep + Row + Col) + Plot −1612.799 3283.941

M5 US(Year):Line ar1h(Year):ar1(Col):ar1(Row) At(Year): (Rep + Row + Col) + Plot −1585.288 3245.676

M6 US(Year):Line ante(Year,1):ar1(Col):ar1(Row) At(Year): (Rep + Row + Col) + Plot −1545.252 3173.160

M7 US(Year):Line corgh(Year):ar1(Col):ar1(Row) At(Year): (Rep + Row + Col) + Plot −1542.028 3175.831

M8 US(Year):Line 2DIMVAR1 At(Year): (Rep + Row + Col) −1526.688 3115.341

M9 RR ar1h(Year):ar1(Col):ar1(Row) At(Year): (Rep + Row + Col) + Plot −1631.308 3314.643

M10 RR ante(Year,1):ar1(Col):ar1(Row) At(Year): (Rep + Row + Col) + Plot −1580.344 3220.703

M11 RR corgh(Year):ar1(Col):ar1(Row) At(Year): (Rep + Row + Col) + Plot −1576.359 3220.761

M12 RR 2DIMVAR1 At(Year): (Rep + Row + Col) −1547.583 3173.185

Models M1–M4 fit separate genetic effects for each assessment time (Year), whereas models M5–M8 fit a fully unstructured covariance model for the genetic effects
across times and models M9–M12 fit a random regression (RR) model for genetic effects over time: Line + lin(time):Line + spl(time):Line + lack of fit term dev(time):
Line. In models M1–M8 a separate fixed effect mean for each assessment time (Year) has been fitted, whereas in models M9–M12 the overall mean has been modelled
over time using the spline model: 1 + lin(time) + spl(time) + lack of fit term dev(time). Model terms are detailed in the Supplementary material.
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Fig. 2. Plot of residuals for each year from model M1 (id(Col) × id(Row)).

Table 3. Residual variances and spatial correlation parameters for
each year from individual analyses of frequency data at each time (M2).

Year Residual Column spatial Row spatial
variance parameter ϕc parameter ϕr

2009 37.364 0.261 0.385

2010 84.575 0.528 −0.048

2011 67.568 0.562 −0.118

2012 106.915 0.582 0.046

2013 261.859 0.622 0.049

residual variance can be seen to increase over time. The 
spatial correlation parameters can also be seen to vary across 
years with ϕc ranging from 0.261 to 0.622 and ϕr ranging from 
−0.118 to 0.385. This difference in spatial parameters across 
times indicates that there may be a need to allow for flexible 
modelling of the spatial parameters over time. 

The next model (M3) fitted an overall Plot term, which was 
significant (REMLRT). The following model (M4) fitted a 

separable spatial and temporal model allowing for different 
residual variances for each time but did not model the correla-
tion between times. This separable residual model assumed 
common row and column spatial parameters across all times, 
with the common spatial correlation parameters estimated 
as (ϕc = 0.400, and ϕr = 0.067). This model was not a 
significant improvement over M3, which allowed for separate 
spatial parameters across times, indicating that the separable 
residual models may not be ideal in this situation. 

Subsequent models fitted more suitable genetic covariance 
models to the genetic effects over time, correlating the genetic 
effects over time. 

Models 5, 6 and 7 fitted an unstructured covariance 
structure to the genetic effects over time, together with different 
residual models. In this trial the number of measurement 
times was low (five times), so it was possible to fit the unstruc-
tured genetic model. In situations of more measurement 
times, the number of parameters requiring estimation in the 
unstructured model is likely to be prohibitive and more 
parsimonious models are desired (e.g. factor analytic (FA) 
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models). In these three unstructured genetic models, the 
residual effects have been modelled using a three-way 
separable spatial and temporal residual model (similar to 
M4), but in these models the temporal covariance structure 
is modelled firstly using a heterogeneous autoregressive 
model of order1 (ar1h) (M5), then an ante-dependence model 
of order 1 (M6), and then a fully parameterised unstructured 
model (M7). Based on AIC values, the ante-dependence model 
was best out of these separable residual models. 

The next model (M8) incorporated the multivariate 
extension of thear1ðColÞ ⊗ ar1ðRowÞ spatial model, the direc-
tionally invariant 2DIMVAR1 residual model, once again 
with an unstructured genetic model. This residual model 
allows for differing spatial parameters for each time, hence 
providing a more flexible spatial and temporal structure. 
The 2DIMVAR1 model was a significant improvement on 
the other residual models (REMLRT P < 0.001 in each case). 

The final three models fitted a more parsimonious 
structure to the genetic effects over time using a random 
regression approach. This approach models the smooth 
trend across time, allowing for predictions at times other than 
the measurement times. The models include an underlying 
overall mean level cubic smoothing spline across times, and 
random variety deviations are modelled (also using cubic 
smoothing splines) about this overall mean response, as in 
Eqn 3. The random variety effects (intercepts and slopes) have 
been correlated to make the model invariant to translation. 
It would also be desirable to correlate the random spline 
components with the random intercepts and slopes to make 
the model invariant to a change in basis (Fitzmaurice et al. 
2009), but this correlation was unable to be fitted. Once 
again in this set of models, the model with the non-separable 
2DIMVAR1 residual model was a significant improvement on 
the models with separable autoregressive (M9), ante-dependence 

Fig. 3. Plot of predictions for each variety (black line) and control (25) (red line) from the random regression model with 2DIMVAR1
residual model (M12) together with predictions at each assessment time (blue points) from the unstructured genetic model with
2DIMVAR1 residual model (M8).
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(M10) and unstructured (M11) by ar1ðColÞ ⊗ ar1ðRowÞ, 
residual models (REMLRT P < 0.001 in each case). 

Variety predictions over time have been made from the 
best random regression model (M12) and smooth responses 
for each variety plotted in Fig. 3. Predictions from the best 
unstructured genetic model (M8) have also been included 
in this plot. Both of these models included the 2DIMVAR1 
residual model. In this figure, the control variety (25) response 
is also plotted in each panel for comparison. The varieties all 
follow a similar trend, so to compare varieties, it is more 
informative to investigate the variety deviations from the 
underlying mean trend. These variety deviations (from M12) 
are presented in Figs 4 and 5. 

There is considerable variety × year interaction as seen 
in the crossovers between deviation curves in Fig. 5. The 

persistent control (25) is high in persistence throughout the 
trial and especially at the start and end, when it is higher 
than all other varieties. Some varieties are consistently low 
(e.g. 30) whereas some start low and continually increase 
relative to the mean (e.g. 26 and 27). Some varieties do 
better in the middle years (e.g. 28, 11, 10) and some do better 
at the end (e.g. 2). Some start high and then decrease (e.g. 18, 
16, 13). 

As an overall measure of frequency to provide a single 
comparison measure to rank varieties over time, the area 
under each predicted variety response curve (from M12) 
has been calculated. A plot of this total area under curve 
(AUC) versus final frequency is presented in Fig. 6, giving 
an insight into those varieties with overall high frequency 
and high final counts at the end of the trial. 

Fig. 4. Plot of variety deviations from overall mean response over time from model M12 together with 95% prediction intervals.
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Fig. 5. Plot of variety deviations from overall mean response over time from model M12.

The control variety (25) can be seen to have the greatest 
AUC and final frequency, while variety 30 has very low 
AUC and final frequency. Varieties 2 and 10 have high AUC 
and also high final frequency, whereas varieties 11 and 28 
have high AUC but slightly lower final frequency. 

To provide insight into how the choice of residual model 
may affect the variety predictions, the best linear unbiased 
predictions (BLUPs) from models M1 (separate non-spatial 
analysis at each time), M5 and M8 (US genetic model with 
3-way separable ð Þ ⊗ ar1ðColÞ ⊗ ar1ðRowÞar1h time and 
2DIMVAR1 residual model, respectively), and M9 and M12 
(CSS random regression genetic model with 3-way separable 
ar1hðtimeÞ ⊗ ar1ðColÞ ⊗ ar1ðRowÞ and 2DIMVAR1 residual 
model, respectively) have been plotted together in Fig. 7. 

There are clear differences in the genetic effects depending 
on the residual model fitted. 

Predicted residual spatial dependency matrices and spatio-
temporal correlations from the final model (M12) are 
presented in the Supplementary material. 

Discussion

The analyses presented in this paper of frequency from a 
perennial pasture variety trial have shown the 2DIMVAR1 
residual model to be superior to all of the separable spatial 
and temporal models fitted under a selection of different 
genetic models. The models have been compared using AIC 
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Fig. 6. Plot showing the area under the curve versus predicted final frequency for each variety predicted from model M12.

values based on the full likelihood (Verbyla 2019). The impact 
of the different residual models on prediction of genetic effects 
has been shown in plots of the BLUPs from competing models. 

The 2DMVAR1 models were fitted in the software package 
ASReml-R, taking only seconds per iteration. As the number 
of measurement times increases, the number of parameters 
required for estimation in the 2DIMVAR1 model also increases, 
thereby increasing the computation time and decreasing the 
feasibility of fitting the 2DMVAR1 model in this form for 
large numbers of times. It is estimated that any more than 
10–12 measurement times may cause computational diffi-
culties using this formulation. Alternative, more parsimonious 
forms of the 2DIMVAR1 model may be possible (De Faveri 
2013) but at this time are unable to be implemented in 
ASReml-R. This is an area of future research. 

The flexibility provided by the 2DIMVAR1 residual model 
makes sense biologically by allowing for differing spatial 
correlation at each measurement time. It would be expected 
that local spatial correlation may be impacted by factors such 
as soil moisture levels that may vary over time and stage of 
growth of the plants. The current approach of modelling 

the spatial and temporal correlation using separable residual 
models that assume common spatial parameters over time is 
likely to be restrictive. In many cases, the extra flexibility 
provided by the 2DIMVAR1 model will provide a statistically 
better model. 

The 2DIMVAR1 residual models in conjunction with 
random regression genetic models using cubic smoothing 
splines are easily implemented in the linear mixed model 
framework, providing an efficient approach for modelling 
variety profiles over time. The models allow overall rankings 
to be made across times (for overall performance) and also 
provide an approach to investigate genotype × time interac-
tions. The models have been implemented here assuming 
independence between varieties but can easily be extended 
to include pedigree or genomic relationship information between 
varieties. The approach can also be extended to the multi-
environment situation so that genotype × environment × 
time interactions may be investigated. 

Although the random regression genetic models did not fit 
as well (based on AIC) as the fully unstructured genetic 
models in this example (this may be a result of very few 
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Fig. 7. Plot of variety BLUPs for each year (represented by colour) from models M1 (separate analysis at each time), M5 and M8 (US
genetic model with 3-way separable and 2DIMVAR1 residual model, respectively), and M9 and M12 (CSS random regression genetic model
with 3-way separable and 2DIMVAR1 residual model, respectively).

measurement times), they enabled in-depth investigation into 
variety × time interactions and predictions between assess-
ment times. With higher numbers of measurement times, 
the unstructured model will require too many parameters 
to be estimated, and the benefit of the more parsimonious 
genetic models such as the random regression approach is 
likely to be more evident. 

Conclusion

Spatial and temporal correlation affects the prediction of 
genetic effects over time from perennial pasture field trials, 
so it is important to model this correlation appropriately. The 
2DIMVAR1 residual model provides a flexible covariance 
structure for modelling this spatial and temporal correlation, 

allowing for differing spatial correlation across measurement 
times. This model has been shown to be a significant improve-
ment on more traditional separable spatio-temporal models 
and, together with parsimonious random regression genetic 
models, enables investigation into variety × time interactions 
in perennial crop evaluation. 

Supplementary material

Supplementary material is available online. 
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