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ABSTRACT

Context. The cereal disease Fusarium crown rot (FCR), caused by the fungal pathogen Fusarium
pseudograminearum, is a worldwide major constraint to winter cereal production, especially in
Australia’s northern grain region of New South Wales and Queensland. Aims. Detection of the
disease is labour-intensive and often not spatially quantifiable; hence, the aim of this study was to
provide methods for in-crop FCR detection on a broadacre scale. Methods. A replicated field
experiment across three locations in northern New South Wales explored the use of thermal
and multispectral imagery and hyperspectral reflectance data for the spatial detection of FCR in
three bread wheat (Triticum aestivum L.) and three durum wheat (T. durum Desf.) varieties in the
presence and absence of inoculation with F. pseudograminearum.Key results. Canopy temperature
was 0.30–0.90°C higher in two-thirds of field sites inoculated with the pathogen during early wheat
growth in a slightly wetter than normal season. Some multispectral indices including normalised
difference red edge, normalised difference vegetation index, near infrared and red edge also
demonstrated the ability to identify inoculated versus uninoculated treatments as early as the first
node stage (GS31).Conclusions. Although positive identification was achieved with remote detection,
environmental conditions (i.e. soil-water availability and ambient temperature) and physiological
maturity influenced the accuracy of the technology for detecting FCR infection, particularly in wetter
early-season conditions. Implications. Early spatial detection of FCR infection on a broadacre scale
could allow producers to manage this disease spatially through better agronomic decisions.

Keywords: aerial imagery, Fusarium crown rot, Fusarium pseudograminearum, remote disease
detection, remote sensing, stubble borne disease, thermal reflectance, wheat.

Introduction

Fusarium crown rot (FCR), caused by Fusarium pseudograminearum (Fp), is recognised 
globally as a major limitation to wheat production (Kazan and Gardiner 2018; Petronaitis 
et al. 2021). The disease is responsible for yield reduction and quality downgrades in wheat 
worldwide, but particularly in the northern grain region of Australia, including New South 
Wales (NSW) and cropping regions of Queensland, owing to the typically low rainfall at 
peak water demand (Simpfendorfer et al. 2019; Petronaitis et al. 2021). The disease 
restricts the plant's ability to transfer solutes and water from roots to shoots, causing 
significant productivity loss (Kazan and Gardiner 2018). FCR has recently been 
estimated to cost the Australian wheat industry approximately AU$404 million in yield and 
quality losses annually, with $112 million of this loss occurring in the northern grains 
region (Hollaway et al. 2022). Furthermore, spatial detection of FCR in-crop is not 
possible at present, with the traditional pathological and visual identification of infection 
being labour-intensive and localised to hand-sampled locations and often requiring 
specialised equipment (Alahmad et al. 2018). 

Remote sensing can be useful for measuring the heterogeneity of crop health on a 
broadacre scale (Franke and Menz 2007). Remote unmanned aerial vehicles (UAVs) 
have become a useful additional management tool in a range of broadacre agricultural 
systems, including for disease detection (West et al. 2017; Bohnenkamp et al. 2019; 
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Francesconi et al. 2021). Plant spectral reflectance across the 
electromagnetic spectrum can often change in relation to the 
metabolic status of the plant (Sankaran and Ehsani 2014). 
This is most often observed in reduced chlorophyll content 
following infection with many rust and other leaf-pigment-
altering pathogens (He et al. 2018). These changes are 
often observed in the visible spectrum (VIS) as well as red 
edge and near-infrared (NIR) regions (380–780 nm, 650– 
780 nm and 800–2500 nm, respectively) (Franke and Menz 
2007). NIR using five bands (900–1700 nm) has been 
demonstrated for non-destructive discrimination between 
Fp-infected and non-infected wheat plants at the seedling 
stage with an accuracy of 55–100% at 3–11 weeks after 
infection under glasshouse conditions (Humpal et al. 2020a). 
Changes in spectral reflectance are only indicative of a change 
in homogeneity of crop health, size or biomass and are unable 
to confirm infection or cause of disease without ground-
truthing of locations of interest (Bhandari et al. 2018; Nagai 
et al. 2020). These observed wavelengths are commonly 
incorporated into specific equations and referred to as multi-
spectral indices, with common examples including the 
normalised difference red edge (NDRE), normalised difference 
vegetation index (NDVI), and the NIR and red edge (Su et al. 
2018; Boiarskii and Hasegawa 2019). 

Thermal imagery can also be used in disease detection, but 
unlike multispectral reflectance, thermal reflectance can have 
stronger metabolic links to changes in plant transpiration 
status, which can be a surrogate indicator for disease (Das 
et al. 2021). Stressed wheat plants often upregulate solute 
transport and metabolic activity (Cox and Boersma 1967; Li 
et al. 2017). In FCR-affected wheat plants, Fp mycelial 
growth colonises the xylem tissue of the vascular bundles, 
which results in a restriction of solute transport throughout 
the plant canopy (Burgess 2014; Knight and Sutherland 2016; 
Buster et al. 2022). It is hypothesised that this restriction 
increases plant canopy temperature owing to reduced 
transpirative cooling (Buster et al. 2022). Furthermore, it is 
hypothesised that, as infected wheat plants mature, the 
effect of Fp colonisation of the xylem would increase and 
exacerbate the increase in canopy temperature by impeding 
fluid transport and reducing transpiration. 

This study investigated the potential of both multispectral 
and thermal (8–14 μm) reflectance to detect FCR in bread 
wheat (Triticum aestivum L.) and durum wheat (T. durum 
Desf.). Previous work has been conducted to explore the 
prospects for FCR detection in wheat using NIR sensors 
(Humpal et al. 2020b). However, the success of that study 
was limited to controlled environments with contact NIR 
sensors, because the accuracy decreased significantly when 
the sensors were removed from the plant tissue. The work is 
beneficial in breeding and pre-breeding screening for FCR-
tolerant varieties, but not at a field scale (Humpal et al. 
2020b). The benefit of this study is the early and spatially 
quantifiable detection of FCR infection on a field scale, which 
could allow growers to manage high risk areas differentially 

in order to minimise productivity losses and optimise 
profitability. 

Materials and methods

Location and soil characteristics

Field experiments were conducted across three research 
stations in northwest NSW: Liverpool Plains Research 
Station (LPRS), Breeza; Australian Cotton Research Institute 
(ACRI), Narrabri; and Piallamore. The experiments were 
repeated in sequential years across the 2020 and 2021 
winter growing seasons. Details of the site locations, plant 
available water (PAW) capacity, sowing and rainfall informa-
tion were reported previously (Buster et al. 2022); however, 
both seasons were wetter and cooler than average for these 
locations. 

Plant materials and growing condition

Three spring bread wheat varieties (LPRB Lancer, LPRB 
Hellfire and Suntop) and three durum wheat varieties (DBA 
Lillaroi, DBA Aurora and Jandaroi) were grown in each of the 
two experimental years across each site. Two water scenarios 
were created: a natural rainfed treatment, and supplementary 
irrigation to represent a higher rainfall scenario. Four nitrogen 
(N) treatments were included in the study for comparison of 
upfront and split applications of N as urea to support yield 
potential at both decile 5 and decile 9 rainfall scenarios at 
each site. This paper reports on the detection of FCR infection, 
and not specifically on water or N treatments, which have been 
reported previously (Buster et al. 2023). 

The pathology of this field trial was described in Buster 
et al. (2022), where visual severity of FCR infection (crown rot 
index) was assessed post-harvest, demonstrating a significant 
effect of inoculation treatment at all three sites in the 2020 
growing season. Uninoculated treatments had a crown rot 
index of 12–28%, whereas inoculated treatments ranged 
from 35% to 66% (Buster et al. 2022). FCR severity was not 
measured in the 2021 season owing to exceedingly wet 
conditions; however, this environment facilitated growth of 
many stubble- and soil-borne pathogens including Fp and 
Alternaria spp. FCR-induced yield penalties of 6–18% were 
observed in the inoculated treatment compared with the 
uninoculated treatment in 2020. However, because of the wet 
seasonal conditions, FCR yield penalties were not observed at 
any of the three sites in the 2021 season. 

UAV field equipment and measurements

Two UAVs were used. One, providing thermal data, was fitted 
with a radiometric thermal camera (ANAFI Thermal; Parrot, 
Paris, France: sensor FLIR Lepton 3.5 microbolometer, sensor 
resolution 160 × 120, spectral band 8–14 μm, thermal 
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sensitivity <50 mK (0.050°C)). The other UAV, providing 
multispectral data, was fitted with a Parrot Sequoia camera 
and sunshine sensor including four monochrome sensors 
(pixel size 3.75 μm, focal length 3.98 mm, resolution 1280 × 960; 
spectral band width: green 530–570 nm,  red 640–680 nm, red 
edge 730–740 nm, NIR 770–810 nm). The two UAVs were 
used for the duration of the field experiments by conducting 
flights at predefined wheat growth stages when suitable flying 
conditions prevailed. Surveys were conducted at a range of 
crop maturity stages including GS31 (stem elongation, first node 
present on main stem), GS39 (flag leaf on main stem), GS50 (ear 
emergence), GS65 (50% of anthers mature), and GS70 (start 
of grain fill, grain watery ripe) (Zadoks et al. 1974). GS31 
precedes the onset of the visual crown browning symptoms of 
FCR, whereas all other growth stages follow the development 
of visual symptoms, and we expect that yield components 
would show increasing influence of FCR as growth stages 
progress. The UAVs were flown at the same geospatial para-
meters (40 m AGM, 85% overlap, 90° angle and self-calculated 
speed) and under optimum solar radiance (11:00–15:00) in 
order to capture timing of greatest evaporative demand within 
the crops. All flights were controlled via a Pix4D capture 
application on a tablet device. 

Equations for calculated multispectral indices are as 
follows: 

NDRE = ðNIR – red edgeÞ=ðNIR + red edgeÞ 

NDVI = ðNIR – redÞ=ðNIR + redÞ 

Hyperspectral field equipment and
measurements

For the second year of the field experiments (2021), hyper-
spectral measurements were taken during the growing season. 
The spectral reflectance measurements were undertaken with 
an ASD FieldSpec 4 Hi-Res spectrometer (350–2500 nm) 
(Malvern Panalytical, Malvern, UK) fitted with a Leaf Clip 
attachment with a sampling resolution of 1 nm. This attachment 
provided a target area of interest of 2 cm, and because it 
delivered its own light source from a 4.25 V, 4.5 W halogen 
lamp (MR6), the measurements were not subject to the 
influences of differing ambient light conditions caused by 
intermittent cloud cover. Measurements were obtained at 
two growth stages for each experimental site GS39 (full flag 
leaf emergence) and GS69 (grain watery ripe). Two plants 
were selected at random from the middle row within each 
plot and were ~2 m from either end of the experimental plot. 
The newest fully unspooled leaf was selected and placed in the 
Leaf Clip ~4 cm from the leaf tip, ensuring full coverage of the 
target area. 

Image processing analysis

All images acquired were separated into sensor type and 
specific flight then stitched together using Pix4D Mapper 

software (Pix4D, Lausanne, Switzerland). Within Pix4D 
Mapper, the thermal images were processed under Thermomap 
and the multispectral images were processed under Ag 
Multispectral. Visioning theory was applied to compare conju-
gate points in overlapping images and determine their 
relative positions and orientations by bundle block adjust-
ment (Bollard-Breen et al. 2015). The software produced a 
radiometric calibrated orthomosaic for thermal and individual 
orthomosaics of NDRE, NDVI, NIR and red edge from each 
flight, which was then exported to QGIS 3.2.1 (www.qgis. 
org, Open Source Geospatial Foundation, Chicago, IL, USA) 
for spatial summary of mean canopy temperature and 
previous identified indices for the field experimental plots. 
Each orthomosaic was processed to remove all non-plant 
material from the assessed plot following methods outlined 
in (Parker et al. 2020) allowing a true representation of crop 
reflectance. A vector grid with a spatial coverage of 6 m × 1 m  
was used to extract the reflectance values from each plot. 

Statistical analyses

The statistical software package R (R Foundation for 
Statistical Computing, Vienna, Austria) was used to fit 
generalised additive models (GAM package ‘mgcv’; Wood 
2011) to each survey including a full tensor product 
smooth to account for underlying spatial variation, and an 
ANOVA table was extracted from the model. Each model 
included the survey data as the response variable with 
inoculation, watering regime, N application, cultivar 
treatments and replicate (block) fitted as response variables 
with all interaction terms. A stepwise model simplification 
function was used to reduce models to the most parsimonious 
form based on the Akaike information criterion. The inocula-
tion predictor variable was always included in these models. 
Model diagnostics of the simplest model were assessed to 
ensure model assumptions were upheld. Post hoc multiple 
comparisons were performed to determine statistical signifi-
cance, and least significant difference (l.s.d.) was calcu-
lated as an approximate measure of the sensitivity of the 
survey method using the ‘agricolae’ package (de Mendiburu 
2019). 

The predictive association between the hyperspectral data 
and infection category was assessed with partial least square 
discriminant analysis (PLS-DA). This analysis uses a PLS 
regression model that transforms a set of correlated dependent 
variables into a new set of uncorrelated variables and regresses 
these against dichotomous categorical independent variables 
(infection category in this case), thereby addressing multi-
collinearity of variables (Serrano-Cinca and Gutiérrez-Nieto 
2013). For the localities of LPRS and Piallamore and the 
GS39 and GS69 data, PLS-DA was undertaken using the 
package ‘ropls’ (Thévenot et al. 2015) and function ‘opls’ in 
R ver. 4.2.1. Following data exploration, the analysis was 
undertaken with one predictive axis and one orthogonal axis 
(to enable basic plotting). Analyses were also undertaken 
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with automatically generated predictive axes, and the results 
were compared with the above to ensure that axes selection 
did not produce different outcomes. P-values were generated 
using 100 permutations as specified in the ‘opls’ function. 

Results

Measurements of canopy temperature made using thermal 
imagery identified Fp-inoculated versus uninoculated treat-
ments at both ACRI and Piallamore in 71% of surveys 
between GS31 and GS65 in 2020 (Table 1). Detection of FCR 
was not achieved at LPRS in 2020. The largest differentiation 
in mean canopy temperature was identified at GS31 at both 
ACRI and Piallamore (0.67°C and 0.90°C, respectively; 
Table 1). Typically, statistical significance was observed 
early in crop growth (before GS50), only once at GS50, and 
not at GS65. Of the thermal surveys conducted during 2020, 
50% measured a significant increase in canopy temperature 
for inoculated compared with uninoculated treatments 
(P < 0.05; Table 1); although 90% of the thermal surveys 
measured an increase in canopy temperature, many did not 
reach statistical significance. Correct identification of Fp-
inoculated versus uninoculated treatments through an 
increase in mean canopy temperature was not achieved in 
the 2021 growing season at any site (Table 2). The l.s.d. 
values calculated using this imagery indicated that thermal 
differences of greater than an average of 0.165°C in 2020 
could be detected as different (Table 1); however, the l.s.d. 
values from 2021 were approximately twice as large as 
those seen in 2020, at 0.35°C (Table 2). 

Multispectral imagery distinguished Fp-inoculated from 
uninoculated treatments at both ACRI and Piallamore at 
GS31 in 2020 (Table 3). Correct identification of inoculation 
was not achieved at LPRS in 2020 with any of the four indices. 

At ACRI, the indices NDRE, NDVI and NIR all correctly 
identified inoculated versus uninoculated treatments, 
whereas red edge did not (P = 0.124). At Piallamore, NDVI 
and red edge both correctly identified inoculated versus 
uninoculated treatments, whereas NDRE was unable to 
distinguish between treatments (P = 0.19). NIR was 
unavailable for Piallamore in 2020 owing to a sensor error. 
Of the multispectral surveys conducted during 2020, 64% 
measured a significant decrease in respective indices for 
inoculated compared with uninoculated treatments (P < 0.05; 
Table 3); although 91% of the multispectral surveys measured 
a decrease in respective indices, some were of insufficient 
magnitude to reach statistical significance. No statistical 
significance was observed with any of the multispectral 
indices at any site in 2021 (Table 4). 

The association between hyperspectral reflectance and 
FCR infection was determined by PLS-DA. The proportion 
of the variation in the data explained by the predictive axes 
is quantified by the R2X term (Table 5). These measures 
indicate that the reflectance data were highly consistent and 
structured. Nonetheless, the R2Y term, which represents the 
proportion of variation explained by the infection classifica-
tion of FCR, was extremely low and ranged between 0.23% 
and 0.54%. Cross-validation of the model allowed calculation 
of the predictive power of the model and is represented by Q2. 
These values were also very small relative to the R2Y values, 
indicating that the model has limited predictive capability 
(Table 5). When 100 permutations were run, randomly 
reshuffling infection labels to the model, the proportion of 
those models that had predictive power equivalent to or 
greater than the real model (represented by PR2Y and PQ2 

values) was quite high, indicating that the capacity of the 
hyperspectral data to predict infection status using PLS-DA 
was strongly limited under these experimental conditions. 

Table 1. Mean canopy temperatures of three bread wheat (LRPB Lancer, Suntop and LRPB Hellfire) and three durum wheat (DBA Lillaroi,
Jandaroi and DBA Aurora) varieties at multiple growth stages (GS) when inoculated or uninoculated with Fusarium pseudograminearum across
three trial sites in 2020: Australian Cotton Research Institute (ACRI), Liverpool Plains Research Station (LPRS) and Piallamore.

Site GS P-value (infection) R2 Mean inoculated temp. (°C) Mean uninoculated temp (°C) Difference (°C) l.s.d. (P = 0.05)

ACRI 31 0.03* 0.31 22.53 (2.18) 21.86 (1.95) 0.67 0.40

ACRI 39 0.02* 0.48 12.82 (1.00) 12.56 (0.99) 0.26 0.17

ACRI 50 0.01* 0.54 16.44 (1.28) 16.07 (0.99) 0.37 0.18

ACRI 65 0.56 0.70 23.07 (1.76) 23.17 (1.87) −0.10 0.23

LPRS 31 0.52 0.79 18.09 (1.05) 18.00 (0.97) 0.09 0.11

LPRS 50 0.88 0.84 27.21 (2.56) 27.18 (1.81) 0.03 0.21

LPRS 65 0.71 0.96 25.68 (1.78) 25.62 (1.76) 0.05 0.09

Piallamore 31 <0.001* 0.92 18.75 (0.99) 17.85 (1.14) 0.90 0.08

Piallamore 39 <0.001* 0.92 14.48 (0.87) 14.17 (0.83) 0.30 0.06

Piallamore 50 0.20 0.87 24.88 (1.36) 24.77 (1.37) 0.10 0.12

P-value represents the significance of infection response from the ANOVA table (* indicates P < 0.05). Standard deviation is given in parentheses following the mean
temperature. Generalised R2 represents the model fit.
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Table 2. Mean canopy temperatures of three bread wheat (LRPB Lancer, Suntop and LRPB Hellfire) and three durum wheat (DBA Lillaroi,
Jandaroi and DBA Aurora) varieties at multiple growth stages (GS) when inoculated or uninoculated with Fusarium pseudograminearum across
three trial sites in 2021: Australian Cotton Research Institute (ACRI), Liverpool Plains Research Station (LPRS) and Piallamore.

Site GS P-value (infection) R2 Mean inoculated temp. (°C) Mean uninoculated temp. (°C) Difference (°C) l.s.d. (P = 0.05)

ACRI 31 0.62 0.40 18.00 (2.09) 17.90 (2.03) 0.10 0.37

ACRI 39 0.32 0.48 24.69 (1.00) 24.91 (0.98) −0.23 0.62

ACRI 65 0.53 0.65 42.42 (1.76) 42.38 (1.87) 0.04 0.36

LPRS 39 0.77 0.09 32.83 (2.56) 32.92 (2.68) −0.09 0.58

LPRS 65 0.24 0.24 27.20 (1.48) 26.95 (1.63) 0.25 0.32

Piallamore 39 0.23 0.35 26.53 (2.35) 26.53 (2.54) −0.01 0.46

Piallamore 50 0.72 0.68 29.74 (1.20) 29.78 (1.30) −0.04 0.16

Piallamore 65 0.08 0.53 33.61 (1.29) 33.91 (1.55) −0.29 0.23

Piallamore 70 0.17 0.84 24.83 (0.68) 24.82 (0.73) 0.00 0.07

P-value represents the significance of infection response from the ANOVA table. Standard deviation is given in parentheses following the mean temperature.
Generalised R2 represents the model fit.

Table 3. Mean canopymultispectral reflectance (NDRE, normalised difference red edge; NDVI, normalised difference vegetation index; NIR, near
infrared; and red edge) of three bread wheat (LRPB Lancer, Suntop and LRPB Hellfire) and three durum wheat (DBA Lillaroi, Jandaroi and DBA
Aurora) varieties at multiple growth stages (GS) when inoculated or uninoculated with Fusarium pseudograminearum across three trial sites in 2020:
Australian Cotton Research Institute (ACRI), Liverpool Plains Research Station (LPRS) and Piallamore.

Site Index GS P-value (infection) R2 Mean inoculated reflectance Mean uninoculated reflectance Difference l.s.d. (P = 0.05)

ACRI NDRE 31 0.005* 0.60 0.272 (0.016) 0.282 (0.013) 0.011 0.002

ACRI NDVI 31 0.000* 0.50 0.893 (0.016) 0.908 (0.010) 0.015 0.002

ACRI NIR 31 0.040* 0.46 0.367 (0.036) 0.405 (0.040) 0.038 0.007

ACRI Red edge 31 0.124 0.56 0.212 (0.019) 0.229 (0.021) 0.017 0.004

LPRS NDRE 39 0.474 0.80 0.245 (0.017) 0.245 (0.017) 0.000 0.002

LPRS NDVI 39 0.240 0.72 0.888 (0.018) 0.890 (0.015) 0.002 0.002

LPRS NIR 39 0.625 0.74 0.386 (0.038) 0.387 (0.034) 0.001 0.004

LPRS Red edge 39 0.526 0.74 0.234 (0.017) 0.234 (0.015) 0.001 0.002

Piallamore NDRE 31 0.191 0.68 0.127 (0.014) 0.139 (0.015) 0.012 0.002

Piallamore NDVI 31 0.003* 0.84 0.148 (0.012) 0.167 (0.013) 0.020 0.001

Piallamore Red edge 31 0.003* 0.84 0.148 (0.012) 0.167 (0.013) 0.020 0.001

P-value represents the significance of infection response from the ANOVA table (* indicates P < 0.05). Standard deviation is given in parentheses following the mean
reflectance. Generalised R2 represents the model fit.

Discussion

To the best of our knowledge, this is the first study to 
demonstrate the potential of remote thermal and multi-
spectral imagery for spatial FCR detection in wheat under 
field conditions. Previous studies have had varying success 
under controlled environmental conditions or through the 
use of proximal (direct contact) sensors (Humpal et al. 
2020b; Xie et al. 2021). We observed increased leaf surface 
temperature, confirming the postulated physiological link 
between Fp colonisation of xylem tissue (Knight and 
Sutherland 2016) and decreased transpiration and water use 
(Buster et al. 2022). In the 2020 season, thermal imagery was 
particularly effective at detecting infection early in the season 

(prior to GS50). Thermal detection identified Fp-infected 
plots before any visual changes (i.e. browning of crown) 
were evident. This observation is similar to what has been 
reported with NIR in pot studies (Humpal et al. 2020b), 
specifically that identification of FCR infection was possible 
even 3 weeks post-inoculation (approximately GS22). 

Early detection of FCR infection could allow growers to 
manage their crop to minimise losses from this disease, for 
example, through decreased or spatially optimised in-crop 
N application. Buster et al. (2023) demonstrated that N 
applications commensurate with achieving maximal yield 
and high protein levels increase FCR severity, decrease N 
use efficiency, or reduce the return on investment for N 
applications. Another management option could be the 
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Table 4. Mean canopymultispectral reflectance (NDRE, normalised difference red edge; NDVI, normalised difference vegetation index; NIR, near
infrared; and red edge) of three bread wheat (LRPB Lancer, Suntop and LRPB Hellfire) and three durum wheat (DBA Lillaroi, Jandaroi and DBA
Aurora) varieties at multiple growth stages (GS) when inoculated or uninoculated with Fusarium pseudograminearum across three trial sites in 2021:
Australian Cotton Research Institute (ACRI), Liverpool Plains Research Station (LPRS) and Piallamore.

Site Index GS P-value R2 Mean inoculated Mean uninoculated Difference l.s.d. (P = 0.05)
(Infection) reflectance reflectance

ACRI NDRE 39 0.429 0.57 0.301 (0.022) 0.300 (0.021) −0.001 0.003

ACRI NDVI 39 0.332 0.63 0.868 (0.023) 0.869 (0.022) 0.000 0.003

ACRI NIR 39 0.857 0.70 0.388 (0.036) 0.388 (0.035) 0.000 0.005

ACRI Red edge 39 0.509 0.80 0.209 (0.019) 0.209 (0.018) 0.000 0.002

ACRI NDRE 65 0.929 0.12 0.080 (0.032) 0.075 (0.037) −0.005 0.008

ACRI NDVI 65 0.943 0.40 0.398 (0.124) 0.377 (0.135) −0.021 0.023

ACRI NIR 65 0.616 0.30 0.215 (0.034) 0.212 (0.032) −0.003 0.006

ACRI Red edge 65 0.387 0.32 0.182 (0.024) 0.182 (0.023) 0.000 0.004

LPRS NDRE 39 0.323 0.65 0.251 (0.036) 0.249 (0.037) −0.002 0.005

LPRS NDVI 39 0.475 0.51 0.865 (0.021) 0.863 (0.024) −0.003 0.004

LPRS NIR 39 0.411 0.66 0.410 (0.039) 0.406 (0.040) −0.004 0.005

LPRS Red edge 39 0.855 0.73 0.244 (0.019) 0.243 (0.021) −0.001 0.002

LPRS NDRE 65 0.172 0.78 0.202 (0.036) 0.203 (0.037) 0.001 0.004

LPRS NDVI 65 0.391 0.72 0.827 (0.027) 0.827 (0.031) 0.000 0.004

LPRS NIR 65 0.927 0.70 0.388 (0.023) 0.387 (0.031) 0.000 0.003

LPRS Red edge 65 0.203 0.634 0.257 (0.016) 0.256 (0.025) −0.001 0.002

Piallamore NDRE 39 0.155 0.733 0.272 (0.018) 0.269 (0.019) −0.003 0.002

Piallamore NDVI 39 0.279 0.707 0.864 (0.013) 0.862 (0.015) −0.002 0.002

Piallamore NIR 39 0.054 0.824 0.349 (0.023) 0.346 (0.024) −0.003 0.002

Piallamore Red edge 39 0.214 0.930 0.200 (0.011) 0.199 (0.012) −0.001 0.001

Piallamore NDRE 65 0.076 0.920 0.133 (0.027) 0.135 (0.026) 0.002 0.002

Piallamore NDVI 65 0.221 0.889 0.693 (0.053) 0.699 (0.051) 0.005 0.004

Piallamore NIR 65 0.102 0.002 0.298 (0.020) 0.299 (0.021) 0.001 0.002

Piallamore Red edge 65 0.483 0.928 0.228 (0.016) 0.227 (0.016) −0.001 0.001

P-value represents the significance of infection response from the ANOVA table. Standard deviation is given in parentheses following the mean reflectance. Generalised
R2 represents the model fit.

spatially selective application of fungicide in-crop. Post-
emergent fungicide treatments are being investigated for 
the treatment of FCR in-crop (Zhang et al. 2022), and once 
available, spatial identification of affected areas could allow 
targeted treatments. Prioritisation of seed treated with a 
preventative fungicide may also occur where potential FCR 
risk zones within a field have been identified with the use 
of imagery from previous seasons. In an irrigated system, 
supplementary water could be targeted to zones with higher 
FCR incidence to limit disease expression and resulting yield 
loss (Buster et al. 2022). Spatial mapping of FCR infection 
within crops could also be used at harvest to manage grain 
quality by prioritising zones with lower infection levels, 
which will also have higher quality (i.e. reduced levels of 
smaller, shrivelled grains) along with increased yield. This 
could be particularly important in regions prone to weather 
damage during harvest, such as the northern grains region 

of Australia, because it would maximise harvest of areas of 
higher grain quality and yield within fields prior to rain events. 

The ability of the remote sensing technologies used in this 
study to detect FCR infection correctly was appreciably 
constrained with advancing crop maturity at both ACRI and 
Piallamore field sites. This is contrary to expectations that, 
as wheat plants mature, the effect of Fp colonisation of the 
xylem in reducing upward water movement would be 
increased and thus would be expected to exacerbate the 
increase in canopy temperature. Three potential explanations 
for this reduced sensitivity with increasing crop maturity are 
proposed. First, assuming decreased water use by FCR-
affected wheat plants (Buster et al. 2022), the Fp-inoculated 
plots may have used less soil water and thus had higher 
PAW than uninoculated treatments when plants reached 
maturity. Therefore, the inoculated treatments may have 
had a lower level of evapotranspirative stress than the 
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Table 5. Model fit parameters from partial least square discriminant
analysis of hyperspectral data collected from three bread wheat (LRPB
Lancer, Suntop and LRPB Hellfire) and three durum wheat (DBA
Lillaroi, Jandaroi and DBA Aurora) varieties at multiple growth stages
(GS) when inoculated or uninoculated with Fusarium pseudograminearum
across two trial sites in 2021; Liverpool Plains Research Station (LPRS)
and Piallamore.

Site GS R2X R2Y Q2 PR2Y PQ2

(cumulative) (cumulative)

Piallamore 39 0.894 0.0054 −0.00065 0.63 0.11

Piallamore 65 0.894 0.0038 −0.0119 0.57 0.76

LPRS 39 0.943 0.0023 −0.00805 0.84 0.64

LPRS 65 0.945 0.0036 −0.00324 0.61 0.30

R2X is the proportion of variation in the data explained by the predictive axes; R2Y
is the proportion of variation in infection classification explained by the model;
Q2 is a measure of the predictive power of the model; PR2Y and PQ2 are the
proportion of models with randomised infection status that exceed the predictive
value of the real PLS-DA model (and as such approximate P-values of R2Y and Q2).

uninoculated treatments. This hypothesis aligns with the 
declining thermal difference observed in the present study 
between inoculated and uninoculated treatments with 
advancing growth stage. The differences in canopy tempera-
ture were larger in early observations than in later growth 
stages, and the difference, although not significant, even 
appeared negative at GS65 at ACRI in 2020. This potential 
mechanism is also reflected in the observations of Buster 
et al. (2022), where PAW measurements indicated that 
Fp-inoculated treatments had more stored water at early 
maturity stages but these differences declined at later growth 
stages. Consequently, the differences in canopy temperature 
diminished as the crop matured, owing to higher soil-water 
availability in the Fp-inoculated treatments. This hypothesis 
is supported by the decreased sensitivity and FCR infection 
detection in the 2021 season where conditions were 
exceedingly wet (Buster et al. 2022) and the different 
patterns of water usage under inoculated conditions were 
negated by high levels of water supply. 

A second possible explanation for smaller detectable 
differences later in the season may relate to the physiological 
manifestation of FCR infection. The specific mechanism of 
yield loss from FCR infection is not yet fully elucidated but 
may involve a combination of carbon loss due to fungal 
growth and reduced photosynthetic efficiency due to xylem 
blockage and stomatal closure (Knight and Sutherland 2015; 
Buster et al. 2022). In particularly wet seasons, reduction in 
photosynthetic capacity due to transpirative stress (expressed 
as increases in leaf temperatures) would be lower because of 
higher humidity and lower vapour pressure deficits. Under 
cool, wet conditions, carbon consumption by fungal growth 
would be expected to continue and represent a physiological 
cost to the plant causing some depression in yield. This 
hypothesis may account for the limited success of thermal 
detection in 2021, where yield loss from FCR infection was not 

recorded in any of the three field experiments. Furthermore, it 
is noteworthy that this study was conducted in two seasons 
that were not conducive to expression of and yield loss from 
FCR infection, owing to excess in-crop water, especially in 
2021 (Liu and Liu 2016; Alahmad et al. 2018). However, 
unlike the 2020 season where significant yield loss was observed 
with successful detection of FCR infection, the 2021 season 
recorded no significant yield loss, and subsequently, 
successful identification of FCR by any remote sensing 
method was not attained (Buster et al. 2022). These explana-
tions have limitations and future research is critical to refine 
methods further and elucidate which of these potential 
explanations is correct. 

A third (less likely) explanation for the decreased 
sensitivity observed when plants were more mature may be 
unquantified limitations of the methods and technology used. 
The thermal drone used at the time of study was of consumer 
grade and was chosen to test the suitability of what would be 
economically viable for growers and consultants. This may 
have restricted detection sensitivity compared with that of 
higher grade thermal cameras such as those used by other 
researchers (Moorhead et al. 2019; Sener et al. 2019). 
Therefore, the spectral resolution or the thermal sensitivity 
may be non-linear, so that as the ambient temperature increased 
throughout the season, the thermal camera sensitivity 
diminished. Although this is a common feature of many types 
of electronic sensors, particularly when approaching the 
extremes of dynamic range, the sensor used is sensitive 
between −10°C and 400°C, and the field temperatures ranged 
between 12°C and 43°C, making this explanation unlikely. In 
addition, the relatively small l.s.d. values observed for 
thermal imagery indicate that in many of these surveys, the 
thermal imagery is quite sensitive to canopy temperature 
changes, and where no difference was detected, it is likely that 
transpiration was relatively uniform between inoculated and 
uninoculated treatments. Furthermore, although only the 
temperature values for leaf area were assessed in image 
analysis, it is possible that as the ambient temperatures 
increased during the season, the darker soil types at the field 
sites buffered external temperatures and radiated heat through 
the canopy, diminishing the separation between treatments. 

The capacity of multispectral imagery to detect differences 
between infected and uninfected treatments in the 2020 field 
trials might suggest the existence of one or many reflectance 
wavelengths that are influenced by the presence of Fp. 
Identification of a specific wavelength or a group of wavelengths 
influenced by biochemical changes caused by the presence of 
Fp in the plant would allow the development of highly specific 
sensors deployable in field management or in breeding 
programs for screening resistant genotypes. Hyperspectral 
reflectance was recorded in 2021 in an attempt to identify 
prospective wavelengths. Substantial interrogation of the 
spectra indicated that although the data were highly structured 
and contained substantial information, <1% of the variation 
was explained by inoculation with Fp. This observation 
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remains consistent with the findings of the other methods 
presented above where thermal and multispectral imagery 
were not able to detect differences in the 2021 season. 
Despite the experimental design successfully establishing 
differences in FCR infection in 2020, we were not able to 
confirm this for the 2021 season owing to environmental 
conditions. From remotely captured data in 2021, we were 
not able to identify any candidate spectral features that 
might indicate the presence of Fp in the plant; however, the 
seasonal conditions were not conducive to the expression of 
the disease. 

Some success was achieved in identification through 
different multispectral indices; however, there is no known 
FCR-related physiological mechanism for a change in any 
specific reflectance feature. Unlike thermal imagery, multi-
spectral reflectance does not link to a specific physiological 
condition, and therefore, it can only generally represent 
underlying plant constraints. Although the methods described 
here may have some efficacy in identifying the spatial 
distribution of FCR, they could also be influenced by other 
biotic or abiotic constraints to plant function. This does not 
diminish the value of the methods proposed in this study 
but rather contextualises the application and interpretation of 
data obtained in this manner. It is our recommendation that 
until a clear mechanistic pathway for disease presentation is 
identified, caution is required when using multispectral 
imagery for FCR detection in wheat crops. 

This is the first study demonstrating the use of remotely 
sensed data to determine the spatial variability of FCR 
distribution in broadacre wheat production. Under climatic 
conditions that allowed some expression of FCR, thermal and 
multispectral imagery had potential to distinguish between 
crops inoculated with Fp and those without inoculation. 
The results showed that canopy temperature was 0.30°C to  
0.90°C higher at two-thirds of field sites inoculated with Fp 
at early growth stages. Some multispectral indices detected 
inoculation treatments some of the time (P = 0.01–0.04). 
Of the methods employed in this study, thermal imagery 
has more direct links to physiological symptoms of FCR 
infection than multispectral analysis, and is therefore 
preferred. Detection of differences using these methods 
appears to have more potential during early growth stages, 
with differences becoming less pronounced later in the 
growing season, perhaps as a result of infection–environment 
interactions. Hyperspectral reflectance does not appear to 
have any specificity for detection of FCR in wheat plants 
and probably more generally reflects plant performance; 
however, climatic conditions experienced during this study 
were not conducive to FCR expression, and so further 
investigation appears warranted. With further research and 
a clear understanding of the other environmental factors 
that can influence remotely sensed data, drone imagery 
could have a role in determining the spatial extent of FCR 
infection in wheat fields and allow site-specific intervention 
and disease management. This would have the potential to 

reduce yield loss and increase profitability of wheat 
production in the presence of this disease worldwide. 
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