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Context. White mould (Sclerotinia sclerotiorum) inflicts major yield losses on common bean
(Phaseolus vulgaris); yet, commercial cultivars known for their high yields and market-adapted grains
lack physiological resistance to this disease. Aims. This study aimed to test diverse common bean
genotypes for resistance in stem, leaf and cotyledon tissues. Methods. Thirty-four common bean
genotypes with a wide range of agronomic traits and grain types, including genotypes noted previously
for susceptible and resistant responses to white mould, were inoculated with the prevalent
S. sclerotiorum isolate MBRS-1. Then they were assessed for resistance in stem, leaf and cotyledon
tissues under controlled environment conditions, by inoculating plantswith a 105mL−1 hyphal fragment
concentration.Key results. Therewas significant (P< 0.001) variation in resistance responses in stem,
leaf and cotyledon tissues across the genotypes. Contender, ICA Bunsi, XAN 280 and Taisho-Kintoki
showed the highest resistance in stems,whereasNorvell 2558, Pico deOro, Sanilac, Othelo andNegro
Argel exhibited notable resistance in leaves. Metis, Canario 107, Pico de Oro, Pogonion and Jubilejnaja
287 displayed the most resistance in cotyledons. Conclusions. This is the first reported attempt to
determine the response of common bean germplasm to a prevalent pathotype of S. sclerotiorum in
Australia. Bean genotypes exhibiting high-level resistance to white mould identified in this study can be
used as parental lines for crosses in common bean breeding programs and/or directly as improved
cultivars. Implications. The study highlighted both the value of screening under controlled
environmental conditions to reliably locate new stem, leaf and/or cotyledon resistances and the
possibility of using rapid cotyledon screening to indicate stem resistances because the expression
of resistances in cotyledons generally correlated strongly with those in stems.

Keywords: common bean, common bean diseases, disease screening, host resistance, Phaseolus
vulgaris, physiological resistance, Sclerotinia rot, stem rot, white mould.
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Common bean, Phaseolus vulgaris, is one of the most widely grown pulse crops for direct 
consumption in both tropical and temperate climates worldwide. The total worldwide 
production of dry bean and area harvested in 2020 was 27.5 million metric tonnes and 
34.8 million hectares, respectively (FAO 2022). Asia contributes approximately 43% to 
the global production, followed by North, Central and South America (29%), and then 
Africa (26%), whereas Europe and Oceania contribute approximately 2% of total produc-
tion (Uebersax et al. 2023). In addition to the use of dry bean for human consumption or 
animal feed, the immature pods are widely consumed as green or string beans. In Australia, 
green bean production occupies more arable land than any vegetable product, except 
potatoes and maize (Australian Bureau of Statistics 2021), and is commonly rotated 
with other major vegetables such as potato and pea (Jones et al. 2011). 

White mould (Sclerotinia sclerotiorum) is a major global disease of common bean (del Río 
et al. 2004; Singh et al. 2014; Kamvar et al. 2017) and causes significant yield losses to both 
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irrigated and rain-fed bean production. For example, in the 
Americas, worst instances of yield losses of >90% occur 
under conducive weather conditions (Singh and Schwartz 
2010; Schwartz and Singh 2013). Increased sowing density 
and irrigation, while necessary for high yields, increases the 
incidence of white mould (Mila et al. 2003; Abán et al. 2018; 
Robison et al. 2018). Because sclerotia of S. sclerotiorum can 
survive in soil for several years, crop rotation is often an 
ineffective form of management, making reliance on fungicidal 
sprays at flowering the most used means of disease control in 
many countries (McCaghey et al. 2019), including in Australia 
(Jones et al. 2012). However, owing to the cost with fungicide 
application, there has been increased use of wider row spacing 
and morphological characteristics that foster ‘disease escape’, 
such as enhanced standing ability as a means to lower canopy 
humidity and decrease contact among plants, and so reduce 
white mould infection (Miklas and Grafton 1992; Ando et al. 
2007). However, although such traits are heritable and with 
associated quantitative trait loci (QTL) identified, they are 
generally also associated with reduced yield (Ender and Kelly 
2005). 

Developing cultivars with inherent physiological resis-
tance is considered the most desirable avenue to manage this 
disease (Miklas et al. 2013; Singh et al. 2017). Despite ongoing 
efforts to pyramid high levels of physiological resistance from 
multiple other species in the Phaseolus secondary gene pool 
into common bean (Singh et al. 2014, 2017), commercial 
common bean cultivars with a combination of high yield, 
market-adapted size and colour, and high physiological 
resistance to white mould are not yet available (Robison et al. 
2018; Campa et al. 2020). Screening the progeny of partially 
resistant genotypes crossed with commercially available 
cultivars of common bean has demonstrated that there is 
potential for breeding lines to contribute their resistance to 
new cultivars with favourable agronomic and seed character-
istics (Miklas et al. 2004; Carvalho et al. 2013). However, 
regional variation in agronomic and market factors further 
complicates such efforts, as a successful commercial cultivar 
must be both adapted to the local climate in terms of high 
yield and meet the preference of local consumers in terms 
of grain attributes such as seed size and colour. Meeting 
consumer preferences for improved common bean cultivars 
can be an additional ongoing and large undertaking for 
breeding programs (Lehner et al. 2015; Lima et al. 2017). 
In addition, S. sclerotiorum has wide diversity, with isolates 
varying in their aggressiveness and interaction with host 
resistance in common bean. Hence, it is not surprising that 
resistant bean genotypes respond differently to different 
isolates at different stages of disease progression (Lehner 
et al. 2016; Abán et al. 2020). 

Common bean germplasm is frequently screened using 
isolates specific to the region concerned (Singh et al. 2017), as 
is the case, for example, in Brazil (Lehner et al. 2016), Spain 
(Pascual et al. 2010) and Argentina (Abán et al. 2020). 
However, resistance in common beans to Australian isolates 

of S. sclerotiorum has not been investigated. Hence, taking 34 
common bean genotypes from various countries, including 
those for partial resistance or susceptibility (Miklas et al. 
2004; Viteri and Singh 2015), the objective was to screen 
these for resistance under controlled environmental conditions 
by comparing their varietal resistance responses on cotyledons, 
leaves and stems. 

Materials and methods

Pathogen isolate preparation and culturing

S. sclerotiorum isolate MBRS-1 was used to screen common 
bean breeding lines in this study. MBRS-1 was originally 
collected from canola (Brassica napus) in the Mount Barker 
region of Western Australia in 2004 (Li et al. 2006). 
This isolate was chosen because it is an aggressive strain 
belonging to Pathotype 76, the prevailing pathotype among 
broadleaf crops in Western Australia (Barbetti et al. 2014; 
Khan et al. 2020), particularly among lupin and Brassica 
crops (Ge et al. 2012). This isolate has been previously used 
to demonstrate differences in susceptible and resistance host 
responses across diverse Brassicaceae (Li et al. 2007; Garg 
et al. 2010). There has not been any previous characterisation 
of the pathogen associated with common bean. 

Cultures were revived from dry-stored MBRS-1 sclerotia 
(Clarkson et al. 2003; Barbetti et al. 2014), briefly as  
follows. Dormant sclerotia were surface sterilised in 6% (v/v) 
sodium hypochlorite for 3 min and washed twice using sterile 
deionised water to ensure all hypochlorite was removed, then 
cut in half and placed face-down on a 2% potato dextrose agar 
(PDA) plate. Agar plugs 3 mm in diameter were cut from the 
original plate cultures when 7 days old and used to subculture 
the pathogen onto further freshly poured PDA plates, but 
containing 1% potato-derived peptone. Finally, 3-mm plugs 
from the growing edge of these colonies when 7 days old 
were used to produce inoculum for stem inoculations and/or 
for further subculturing as necessary. For cotyledon and leaf 
inoculations, hyphal inoculum was prepared in liquid culture 
by using the methodology of Garg et al. (2008). All cultures 
were incubated at 18°C. 

Common bean cultivars

Thirty-three P. vulgaris genotypes were obtained from the 
international bean collection at the Australian Grains 
Genebank. Genotypes were chosen to represent the diversity 
of flowering time, seed weight and country of origin, and 
included available genotypes that had been used in previous 
studies involving S. sclerotiorum. Table 1 displays information 
about agronomic characteristics of bean genotypes used for 
this study. Some additional information was also extracted 
from Li et al. (2016). The selected genotypes included ICA 
Bunsi, a variety noted for moderate resistance to S. sclerotiorum 
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Table 1. Percentage stem disease index following colonised mycelial plug inoculation; percentage cotyledon and leaf disease index follow hyphal
inoculation, origin and varietal traits for common bean (Phaseolus vulgaris) genotypes infected with Sclerotinia sclerotiorum isolate MBRS-1.

Genotype Country origin Stem disease Cotyledon Leaf disease Days to Seed weight Seed type
index (%) disease index (%) flowering (g/100)B

index (%)A

Contender United States 9.7 (1) – 52.1 (33) 34 54.2 Shiny mottled cream

ICA Bunsi Colombia 16.0 (2) 47.9 (21) 13.9 (19) 42 15.8 Dull white

XAN 280 Colombia 21.5 (3) 44.9 (18) 17.4 (26) 49 – Black

Taisho Kintoki Japan 23.6 (4) – 12.9 (16) 36 58.7 Dull mottled red

ARS-R93003 United States 32.6 (5) 48.1 (22) 12.9 (16) 38 41.2 Shiny pink

Radical Colombia 33.3 (6) 34.9 (7) 5.9 (10) 49 63.2 Shiny red

Centralia Canada 34.0 (7) 43.1 (17) 5.4 (8) 44 – White

BAT 1217 India 34.0 (7) 37.7 (9) 39.5 (32) 42 21.4 Shiny purple

Royal Red Colombia 34.0 (7) 45.3 (19) 59.0 (34) 36 – Shiny red

Burter’s Blight Proof United States 34.0 (7) 38.0 (11) 22.4 (28) 34 16.5 Shiny white

Light Red Kidney United States 35.4 (11) 32.5 (6) 30.0 (30) 40 44.5 Shiny brown

Teebus South Africa 40.3 (12) 50.3 (23) 10.0 (12) 39 23 Shiny white

Swedish Brown Canada 41.0 (13) 39.3 (12) 5.5 (9) 38 33 Shiny yellow

A55 (a) Colombia 42.2 (14) 41.2 (14) 20.0 (27) 46 – Dull black

Othelo Colombia 44.4 (15) 41.4 (16) 2.7 (4) 36 43.4 Shiny striped cream

A55 (b) India 44.4 (15) 41.2 (14) 16.2 (24) 44 27.2 Dull black

A54 India 45.1 (17) – 30.0 (30) 46 21.8 Dull buff

Kingaroy 53 Australia 45.8 (18) 54.3 (24) 26.4 (29) 41 41.2 White

Negro Argel Chile 45.8 (18) 62.6 (27) 2.8 (5) 49 18.9 Shiny black

Tweed Wonder Australia 45.8 (18) – 14.9 (21) 40 52.7 Shiny red

Sanilac United States 46.5 (21) 55.3 (25) 1.4 (3) 36 22 Shiny white

SEA 2 Colombia 49.3 (22) 37.9 (10) 10.2 (14) 42 – Dotted buff

Metis Colombia 50.0 (23) 19.7 (1) 14.9 (21) 34 14 Shiny white

Norvell 2558 Guatemala 50.0 (23) 46.7 (20) 0 (1) 46 28.1 Dull black

Pogonion Colombia 52.1 (25) 26.8 (4) 5.3 (7) 36 61.8 Shiny yellow

PP 1088 Turkey 56.9 (26) 40.8 (13) 9.4 (11) 38 41.8 Shiny yellow

A99 India 59.0 (27) 56.2 (26) 15.9 (23) 38 27.4 Dull buff

Canario 107 Colombia 60.4 (28) 24.0 (2) 10.9 (15) 36 – Shiny yellow

Jubilejnaja 287 Russian Federation 64.6 (29) 29.2 (5) 9.9 (12) 38 24.5 Shiny white

Borlotti Colombia 64.6 (29) – 16.4 (25) 40 41.2 Mottled brown

Pico de Oro Brazil 65.3 (31) 24.3 (3) 0 (1) 42 – Dull buff

XPB 155 India 66.0 (32) 35.8 (8) 13.8 (18) 38 22.4 Dull white

Seaway United States 66.0 (32) 64.3 (28) 14.4 (20) 36 17.4 Shiny white

Hebar Bulgaria 70.1 (34) – 3.9 (6) 36 26.4 White

Significance <0.001 <0.001 <0.001

l.s.d. (P < 0.05) – 26.9 18.6 4.21

AMissing cotyledon disease index values are due to slow germination, making cotyledons on some genotypes inaccessible for inoculation.
BHistorical data for seed weight were not available for all genotypes.

(Tu and Beversdorf 1982; Miklas et al. 2004), and the Singh et al. 2003) and Othello (Singh et al. 2014; Viteri and 
Canadian cultivar Centralia descended from it (Park et al. 1988). Singh 2015). Two separate batches of A55 germplasm were 
Two genotypes known to exhibit susceptibility to the disease obtained from the Genebank and utilised but noted to have 
were included as susceptible checks A55 (Miklas et al. 2001; been supplied from different countries (India and Colombia). 
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All selected genotypes had an upright growth habit (Type I or 
II) that is suitable for mechanical harvesting. Whereas this 
habit is considered to offer some reduction in the incidence 
of white mould under field conditions (Schwartz and Singh 
2013), Othello growth habit was Type III (i.e. indeterminate 
prostate). An additional commercial cultivar, ‘Borlotti’, that is 
widely utilised in Australia (Yates Australia), was included as 
a comparison, totalling 34 test genotypes. 

Plant establishment

Four seeds per each of the 34 selected genotypes were sown 
into each pot (pots 10 × 10 × 20 cm depth) at a depth of 3 cm. 
Pots were filled with modified University of Western Australia 
potting mix consisting of 50% composted pine bark, 20% 
coco peat and 30% fine river sand that together had been 
pasteurised at 65°C for 90 min. Throughout experiments, 
all plants were kept in a controlled environment room 
maintained at 24°C by day, 18°C by night, constant 70% 
humidity and with a 12-h photoperiod. This temperature 
range is considered optimal for Australian common bean 
production. Plants were fertilised with Thrive All-Purpose 
fertiliser (N:P:K ratio of 25:5:8.8, Yates Australia) according 
to manufacturer recommendations. 

Inoculation of cotyledons and disease assessment

Seven 3-mm plugs of PDA were cut from the growing edge of 
each S. sclerotiorum colony. These were used to inoculate 
75-mL batches of liquid potato dextrose medium (24 g L−1 

potato dextrose) containing 10 g L−1 potato peptone. Cultures 
were then incubated in 250 mL flasks at room temperature for 
72 h on a rotary shaker at 120 rpm at 25°C. The resulting 
mycelial mat was removed and washed twice with sterile 
deionised water to remove any residual fungal metabolites 
from the liquid medium, then resuspended in 125 mL of 
liquid medium. Mycelium was macerated for 5 min using a 
sterilised stick-blender and then filtered using four layers of 
muslin cloth. Using a haemocytometer counting chamber 
(Superior), liquid medium was used to dilute samples until 
a hyphal fragment concentration of 105 mL−1 was achieved. 

Cotyledons were inoculated, with a single 10-μL droplet 
applied by micropipette to the surface of each fully opened 
cotyledon 8 days after sowing. During inoculation, the 
mycelial suspension was regularly mixed by handshaking to 
prevent clumping of hyphae. Plants were maintained for 
72 h post-inoculation (hpi) in translucent sealed plastic boxes 
containing water to a depth of 2 cm, so as to maintain high 
humidity. This ensured both reduced lighting and high 
humidity, which together favour S. sclerotiorum infection 
(Garg et al. 2008). 

Cotyledons were assessed 72 hpi. Lesions were rated 
according to their length (mm) as a proportion of cotyledon 
size, from 0 (0% lesion coverage) to 5 (100% lesion coverage) 
and the mean lesion score across all plants in each pot was 

taken to be a single replicate score. Ratings were converted 
into a mean percentage cotyledon disease index (%CDI) on 
the basis of the method of McKinney and Davis (1923), as  
follows: 

%CDI = f½ða × 0Þ + ðb × 1Þ + ðc × 2Þ + ðd × 3Þ + ðe × 4Þ 
+ ðf × 5Þ� × 100g=½ða + b + c + d + e + f Þ × 5 

where a, b, c, d, e and f are the number of plants with leaf-
disease scores of 0, 1, 2, 3, 4 and 5, respectively, as widely 
used for cotyledon infection studies (Murtza et al. 2021). 

Leaf and stem inoculations and disease
assessments in adult plants

Leaves
To screen common bean breeding lines, for leaves, liquid 

inoculum was prepared using the method described above for 
cotyledons. Forty days after sowing, when visible flower buds 
were present on >50% of plants and flowers had begun to 
open on each plant, the uppermost fully opened and expanded 
leaf was inoculated in two locations (both leaf lobes) with a 
10-μL droplet applied using a micropipette and allowed to dry 
slightly to ensure adhesion to the leaf surface. High humidity 
was maintained post-inoculation by hand-misting inoculated 
plants with deionised water and covering them with a translu-
cent plastic cover for 72 h. At 72 hpi, leaf lesion diameter was 
measured on all inoculated leaves using calipers and a mean 
leaf lesion diameter computed on a 0–9 scale, where 0 = no 
disease symptoms; 1 = <1mm;  2  = 1–<3; 3 = 3–<6; 4 = 6–<9; 
5 = 9–<12; 6 = 12–<15; 7 = 15–<18; 8 = 18–<21; and 
9 = >21 mm. Ratings were converted into a mean percentage 
leaf disease index, as described for cotyledon disease above, 
but modified to include the greater number of score categories. 

Stems
Forty days after sowing, when visible flower buds were 

present on >50% of plants and flowers had begun to open 
on each plant, stems were inoculated using the method 
described for canola screening by Barbetti et al. (2015). This 
involved taking S. sclerotiorum-colonised 5-mm plugs from 
freshly cultured peptone–PDA. Petri dishes of S. sclerotiorum 
and attaching a single colonised agar plug to each stem 
directly below the 1st node, by using Parafilm. This method 
roughly approximates the ‘straw test’ commonly used to test 
P. vulgaris disease response in the field (Singh and Terán 
2008). High humidity post-inoculation was provided as for 
leaf studies, and stem infection was recorded at 72 hpi. The 
nine-point scale described by Terán et al. (2006) and 
modified by Singh et al. (2014) for cut-stem and straw test 
screenings of common bean infection was adapted to compute 
stem disease severity scores as follows: Scores 1–3 represented  
a resistant response in which the fungus failed to progress 
past any node; Scores 4–6 represented moderate infection 
proceeding past the first post-inoculation node; and Scores 
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7–<9 represented infection past the second post-inoculation 
node. Score 0 indicated no infection, whereas any plant 
destroyed by stem collapse because of infection was assigned 
a score of 9. These scores were converted to mean percentage 
stem disease index, as described above for cotyledons, but 
modified to include the greater number of score categories. 

Data analysis

The experiment was fully repeated once. Each experiment had 
six single pot replications per genotype, with a total of 204 
pots arranged as a ‘fully randomised design’, generated by 
using the ‘Generate a Standard Design’ function of GenStat 
18.1 (18th edition, Lawes Agricultural Trust, Rothamsted 
Research, UK). Normality of data and homogeneity of the 
original and repeat experiments were tested before conducting 
analyses. Data from the original and the repeat experiments 
were not significantly (P > 0.05) different by using a 
Student’s t-test nor when comparing cultivar responses 
across the duplicate experiments when compared using an 
F-test for equality of two variances. Therefore, data from the 
original and repeat experiments were combined, and analysed 
together as a single data set, using completely randomised 
ANOVA function in GenStat. Fisher’s least significant differ-
ence (l.s.d. at P ≤ 0.05) test was used to highlight differences 
among genotypes in relation to the three different disease 
assessment parameters (percentage cotyledon, leaf or stem 
disease indices). Where appropriate, correlation gradients 
were plotted and R2 values calculated using Microsoft Excel. 

Results

Cotyledon inoculations

Cotyledons developed characteristic lesions and significant 
differences in %CDI were observed (P < 0.001) (Table 1, 
Fig. 1a–c). The disease index of the cotyledon ranged between 
19.7% (Metis) and 64.3% (Seaway). Other than Metis, 
genotypes also showing high level of cotyledon resistance 
included Canario 107, Pico de Oro, Pogonion and Jubilejnaja 
287, with index values of 24.0, 24.3, 26.8 and 29.2, respec-
tively. Whereas no significant difference was observed in 
%CDI between ICA Bunsi (47.9), Othello (41.4) and A55a,b 
(both 41.2), these three genotypes had significantly greater 
%CDI values than did the most resistant genotype Metis (19.7). 

Leaf inoculations

There were significant (P < 0.05) differences in %LDI across 
the test genotypes (Table 1, Fig. 1d, e). Percentage leaf disease 
index values ranged from 0 (Norvell 2558, Pico de Oro) to 
59.0 (Royal Red). Other genotypes showing a high level of 
leaf resistance included Sanilac (1.4), Othelo (2.7) and Negro 
Argel (2.8). The %LDI for Othelo (2.7) was significantly lower 
than that for ICA Bunsi (13.9), the latter, in turn, being 
significantly lower than that for A55a (20.0) but not for A55b 

Fig. 1. Symptoms of S. sclerotiorum infection in common bean
cotyledon, stem and leaf tissue. (a) Typical seedling, with the growing tip
removed to maintain cotyledon attachment and cotyledons with typical
white mould infection; (b, c) cotyledon of resistant and susceptible
genotypes, respectively; (d, e) leaf of resistant and susceptible geno-
types, respectively; (f ) how Sclerotinia sclerotiorum colonised agar plug
is attached using Parafilm to inoculate stems; (g, h) stem lesions on
resistant and susceptible genotypes, respectively.

(16.2). The latter three genotypes had significantly greater 
%LDI values than the most resistant genotypes Norvell 2558 
and Pico de Oro (both 0), Sanilac (1.4), Othelo (2.7) and 
Negro Argel (2.8). 

Stem inoculations

There were significant (P < 0.001) differences in %SDI (Table 1, 
Fig. 1f–h), ranging from 9.7 (Contender) to 70.1 (Hebar). 
Genotypes other than Contender showing a high level of 
stem resistance included ICA Bunsi (16.0), XAN 280 (21.5) 
and Taisho Kintoki (23.6). Contender had a significantly 
lower %SDI than did both Othello (44.4) and A55a,b from 
both origins (44.4, 42.2), but ICA Bunsi (16.0) was not 
significantly different from Othello or the A55a,b genotypes. 

Correlations

Percentage stem disease index correlated strongly and 
positively with %CDI (R2 = 0.7; n = 28; P < 0.001) and seed 
weight (R2 = 0.7; n = 28; P < 0.001). There were no other 
significant correlations between any of the disease or other 
factors considered in this study. 
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Discussion

This is the first reported attempt to determine the response 
of common bean germplasm to a prevalent pathotype of 
S. sclerotiorum in Australia. The most resistant responses in 
stems were Contender, ICA Bunsi, XAN 280 and Taisho-
Kintoki, in leaves were Norvell 2558, Pico de Oro, Sanilac, 
Othelo and Negro Argel, and in cotyledons were Metis, 
Canario 107, Pico de Oro, Pogonion and Jubilejnaja 287. 
Bean genotypes exhibiting partial resistance to white mould 
identified in this study can be used as parental lines for 
crosses in common bean breeding programs and/or directly 
as improved cultivars where no resistance currently exists. 
Of the three plant components assessed, resistance to white 
mould in terms of stem resistance is considered the most 
critical towards effective management of white mould. The 
level of stem resistance found in Contender was similar to 
that of the moderately resistant variety ICA Bunsi, which in 
turn significantly outperformed A55a,b and Othello. Contender 
(also marketed as Buff Valentine) was developed in South 
Carolina, released in 1950, and has been well studied in the 
context of its genetic diversity within P. vulgaris and as a 
worldwide reference variety for production studies (Gepts 
et al. 1986; Nienhuis and Sass 2016; Meena et al. 2018). 
However, for this variety, there has not been any previous 
expression of physiological or morphological resistance on 
any plant component to white mould. 

In previous studies, ICA Bunsi has consistently outper-
formed Othello, despite not being considered highly resistant 
(Viteri and Singh 2015). Although the difference in response 
between these two cultivars is not always large (Viteri and 
Singh 2015), in the current study ICA Bunsi showed much 
greater stem resistance to white mould. Resistance to white 
mould is known to be highly variable across common bean 
cultivars (Schwartz and Singh 2013), being similar to a wide 
range of host resistances/susceptibilities noted in previous 
studies across diverse Brassicaceae screened against this same 
isolate of S. sclerotiorum (Uloth et al. 2013, 2015; Barbetti 
et al. 2014; You et al. 2016). Interestingly, in previous studies, 
individual Othello plants have been identified as resistant to 
some isolates of S. sclerotiorum, even when the mean response 
is overall susceptible (Singh et al. 2014). Furthermore, 
Othello displays a Type III growth habit (indeterminate 
prostrate), a growth habit that is known to generally be 
more susceptible to white mould in the field than the more 
upright types of common bean (Ando et al. 2007; Schwartz 
and Singh 2013). 

The four genotypes that showed significantly smaller stem 
lesions than did A55a or A55b in the current study also 
included ICA Bunsi, but not its derived cultivar, Centralia. 
The other three, being Contender, breeding line XAN 280 and 
the Japanese landrace Taisho-Kintoki, have not previously 
been noted for resistance to S. sclerotiorum. However, XAN 
280 has been previously noted for its high resistance to 

bacterial blight (Xanthomonas campestris) in the field 
(Rodriguez et al. 1999). Hence, XAN 280 may be particularly 
useful for locating combined disease resistance where both 
white mould and bacterial blight co-occur. Whereas Taisho-
Kintoki has been noted for low yield, its seed quality and 
early maturation have led to the development of higher-
yielding cultivars of Kintoki bean such as Fukura Kintoki, 
which may be a worthwhile inclusion in future resistance-
screening studies (Narikawa 1972; Ebe et al. 2005). 

S. sclerotiorum is capable of damaging beans in the field at 
all stages of growth (Schwartz and Singh 2013). However, 
yield loss from white mould primarily occurs once a canopy 
has developed, encouraged by both the rising humidity 
around the stems and the senescent leaf and flower tissues 
that act as additional inoculum. In addition, airborne ascospores 
of S. sclerotiorum frequently land on and directly infect leaves 
in addition to flowers, as found in Brassicaceae even when not 
flowering (Uloth et al. 2013; M. J. Barbetti, unpubl. data). 
Such infested leaves collapse around stems and this leads 
to additional severe stem disease (Uloth et al. 2013; M. J.  
Barbetti, unpubl. data). Ideally, combining stem and leaf 
resistances into new commercial cultivars would significantly 
improve overall management of white mould. 

Percentage stem disease index correlated strongly and 
positively with percentage cotyledon disease index and 
with seed weight. This suggests that there is scope for using a 
rapid cotyledon test as a preliminary screen for stem resis-
tance to white mould. Conversely, it appears that resistance 
expressed in leaves is under separate genetic control to that in 
stems, such that separate searches are required for determining 
stem and leaf resistances. The correlation between %SDI and 
seed weight is interesting, with large-seeded beans being 
seemingly more susceptible to severe white mould. Perhaps 
this could relate to subsequent stem diameter, because Li et al. 
(2006) showed that stem diameter was an important determi-
nate of the severity of Sclerotinia stem rot in Brassicaceae. 

Phaseolus is a genetically diverse genus and has two major 
gene pools, the Andean and Mesoamerican, which reflect its 
multiple centres of origin and subsequent hybridisation 
(Gepts 1998; Bitocchi et al. 2017). ICA Bunsi and its derivatives 
are derived from the Mesoamerican gene pool (Miklas et al. 
2004), as are A55a,b and Othello (Seo 2003; Singh et al. 
2003). However, Contender is derived from the Andean 
gene pool, and is further assigned to a subgroup of the pool 
because of its uncommon phaseolin banding pattern (de la 
Fuente et al. 2012). Further study into stem, leaf and 
cotyledon resistance to white mould displayed by Andean 
and hybrid beans by using more wide-ranging Australian 
Sclerotinia isolates of varying aggressiveness and across 
different pathotypes would be useful. 

Common bean canopy architecture and growth habit can 
be important determinants of S. sclerotiorum disease severity 
and their influence could be different under controlled environ-
ment versus field conditions (Schwartz and Singh 2013). 
However, stem inoculations under controlled conditions are 
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known to provide more consistent results than are field trials 
(Kull et al. 2003). Despite this, additional field studies would 
allow assessment of the impact of any field environment and 
morphological ‘disease avoidance’ mechanisms on partial 
physiological resistances highlighted in the current study. 

Conclusions

These present studies have reported the first response of 
common bean genotypes to a prevalent pathotype of S. 
sclerotiorum in Australia. Genotypes identified with high-
level stem or leaf resistance are of particularly significant 
value for developing new white mould-resistant cultivars of 
common bean. Even genotypes identified with moderate 
levels of resistance in this study can be used as parental 
lines aimed at increasing resistance levels in common bean 
breeding programs. If deployed commercially, these resis-
tances offer significant prospects for improving current 
integrated disease management strategies, as compared with 
current reliance on cultural and/or chemical controls utilised 
with cultivars generally lacking ‘useful’ resistance. Finally, as 
resistance was identified for the first time across some of these 
genotypes, it is likely that they could constitute new sources 
and/or types of host resistance not previously identified. 
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