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Introduction

Human health is directly related to the quality of food consumed.
Copper (Cu), iron (Fe), manganese (Mn), selenium (Se) and zinc
(Zn) aremicronutrients that are often deficient in diets consumed
around the world (Ritchie and Roser 2017). Plants are the direct
or indirect sources of these micronutrients for human
consumption. The micronutrient concentrations in plant-based
foods are, therefore, the indicators of the balanced and healthy
diets of humans.With plant-based foods not providing sufficient
micronutrients to meet the human needs, the agricultural sector
needed to address this challenge. Micronutrient biofortification
of food crops, especially of staple cereal grains, is a promising
approach to mitigate the widespread micronutrient deficiencies
in susceptible human populations in both developing and
developed countries. Several agronomic and genetic
approaches have been suggested to increase micronutrient
density in edible plant parts. In the last two decades, the
research on various aspects of micronutrient biofortification is
one of the major foci of plant scientists around the world.

Contamination of natural resources and the resultant
accumulation of toxic metal(loid)s such as arsenic (As) and
cadmium (Cd) in food crops has increased dietary intake of
these contaminants (Afonne and Ifediba 2020). Exposure to their
high concentration may lead to both acute and chronic toxicities
in human population, even when living far away from the
contamination sources. This is quite an opposite challenge to
the micronutrient deficiencies in human populations. In living
cells, the potentially toxic metal(loid)s are absorbed via the
transporters of essential minerals. This makes it very
challenging for plant breeders to develop crop cultivars that
can differentiate between the essential and toxic elements.

Given the prevailing scenario, it is urgent to develop the
strategies for producing micronutrient-dense plant-based foods
with the concentrations of heavy metal(loid)s below the
maximum permissible levels. The special issue on Mineral
Biofortification and Metal/Metalloid Accumulation in Food
Crops was aimed at publishing the latest research on
agronomic and genetic biofortification, and metal/metalloid
accumulation in food crops. Following is a brief description
of the articles included in part one of the special issue.

Agronomic biofortification

Accumulation of micronutrients in grain may be influenced by
source, rate, time and method of fertiliser application. For

common bean, soil application of 0.25 mg Se kg�1 contributed
to water deficit tolerance and Se biofortification (Ravello et al.
2022). Comparing Fe application methods for rice, Zulfiqar
et al. (2022) concluded that grain yield and benefit-to-cost
ratio were the highest with Fe osmopriming. However, the
largest increase in grain Fe concentration was recorded with
foliar Fe application. Ning et al. (2022) reported that, as
compared to the foliar spray of Zn sulfate alone, grain Zn
bioavailability was at par or significantly increased in
combined foliar sprays of Zn, insecticides and
biostimulants. Micronutrients can also be sprayed on fruits
and vegetables after harvest. The postharvest spraying of nano
Zn increased Zn concentration and shelf life of tomato fruits
(Sharifan et al. 2022).

Micronutrients interact with other agricultural inputs and
such interactions may influence micronutrient biofortification.
Zhang et al. (2022) reported that, compared with applying Zn
only, the combined Zn and sucrose supply to detached ears of
wheat increased grain content of Zn, Fe and proteins. Because of
phosphorus (P)-Se interactions in soils, soil P application
increased Se desorption from soils and its uptake by
Mombaça grass (dos Santos et al. 2022).

Wild plant species with edible parts may also be used in
humannutrition. Lowelectrical conductivity andmoderate pH in
fertigation were associated with optimal yield and micronutrient
concentrations (Fe, Zn, Cu and Mn) in wild dune spinach
(Tetragonia decumbens) (Nkcukankcuka et al. 2022).

Genetic biofortification

Genetic and molecular characterisation is important to identify
the potentially useful germplasm/genes and to develop
micronutrient-dense and/or low-antinutrient cultivars. Tahir
et al. (2022) evaluated advanced breeding lines of wheat
for genes related to Zn and Fe concentrations in grains.
From a population of doubled haploid lines of wheat,
Lephuthing et al. (2022) identified 15 lines (high in Fe, Zn
and yield) for future research. Regarding selection of low-
antinutrient genotypes, Ragi et al. (2022) identified several
promising maize hybrids produced from inbred lines of wild-
type and subtropically adapted low-phytate mutants (lpa1–1).
In addition to the above genetic approaches, Ibrahim et al.
(2022) argued that precise genome editing tools (such as
CRISPR/Cas9) can deliver new micronutrient biofortified
cultivars with no linkage-drag and biosafety issues.
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Understanding expression of genes associated with the
antioxidant system, micronutrient uptake and plant growth
is fundamental for developing biofortified cultivars suitable
for nutrient-poor conditions. Kenzhebayeva et al. (2022)
studied the parents (cv. Almaken and cv. Zhenis) and their
genetically-stable M5 mutant lines of wheat. The grain Fe
accumulation under low Fe supply depended on the expression
of several genes related to Fe uptake and transport in roots and
shoots. In barrel medic, the tolerance to Fe deficiency was
linked to the expression of genes coding for Cu chaperone, Fe-
SOD and Cu/Zn-SOD, and the leaf accumulation of
polyphenol compounds (Kallala et al. 2022).

Metal/metalloid accumulation

The studies on toxicity, tolerance and partitioning of heavymetal
(loid)s in food crops are prerequisite for producing safe food.
Khan et al. (2022) suggested that detoxification of both As and
Cd in brown mustard occurs via a glutathione-dependent
pathway, but the concentration of cysteine (the precursor of
glutathione) is regulated differently under Cd versus As stress.

There arenumerous reportsonAsbeingabove thepermissible
levels in plant-based foods. Along with wise management of
irrigation water, the effective agronomic approaches that could
mitigate the problem include balanced fertilisation/treatment
with essential and beneficial elements, use of metal
nanoparticles and application of biochars (Srivastava et al.
2022). In zucchini grown under As contamination, chitosan-
modified biochar decreased As uptake and increased plant
growth (Mehmood et al. 2022). Islam et al. (2022) suggested
seed microbial inoculation to increase plant tolerance to As and
concurrently enable phytoremediation of As and other metal
(loid)s. Developing new crop cultivars low in toxic metal(loid)
accumulation, however, remains one of the fundamental
approaches to mitigate the contamination problem.
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