Preface
Roger Hegarty v

Greenhouse gas emissions from New Zealand agriculture: issues, perspectives and industry response.
M. Leslie, M. Aspin and H. Clark 1–5

Redirecting rumen fermentation to reduce methanogenesis.
T. A. McAllister and C. J. Newbold 7–13

Targeted technologies for nitrous oxide abatement from animal agriculture.
C. A. M. de Klein and R. J. Eckard 14–20

Nutritional management for enteric methane abatement: a review.
K. A. Beauchemin, M. Kreuzer, F. O’Mara and T. A. McAllister 21–27

Methanogen genomics to discover targets for methane mitigation technologies and options for alternative H2 utilisation in the rumen.
Graeme Attwood and Christopher McSweeney 28–37

Optimising manure management for GHG outcomes.
H. G. van der Meer 38–45

Mitigation strategies for greenhouse gas emissions from animal production systems: synergy between measuring and modelling at different scales.

Opportunities and challenges of converting biogas from pig farms into renewable energy in developing countries in Asia – a Malaysian experience.

Managing livestock enterprises in Australia’s extensive rangelands for greenhouse gas and environmental outcomes: a pastoral company perspective.
D. Bentley, R. S. Hegarty and A. R. Alford 60–64

Monensin controlled-release capsules for methane mitigation in pasture-fed dairy cows.
G. C. Waghorn, H. Clark, V. Taufa and A. Cavanagh 65–68

Changes in methane emission and rumen fermentation parameters induced by refaunation in sheep.
D. P. Morgavi, J.-P. Jouany and C. Martin 69–72

Supplementation with whole cottonseed reduces methane emissions and can profitably increase milk production of dairy cows offered a forage and cereal grain diet.
C. Grainger, T. Clarke, K. A. Beauchemin, S. M. McGinn and R. J. Eckard 73–76

Absence of persistent methane emission differences in three breeds of dairy cows.
A. Münger and M. Kreuzer 77–82

Analysis of the Methanobrevibacter ruminantium draft genome: understanding methanogen biology to inhibit their action in the rumen.

Using a life cycle assessment method to determine the environmental impacts of manure utilisation: biogas plant and composting systems.
T. Hishinuma, H. Kurishima, C. Yang and Y. Genchi 89–92

GHG emissions during the storage of rough pig slurry and the fractions obtained by mechanical separation.
E. Dinuccio, P. Balsari and W. Berg 93–95
Gypsum reduces methane emission during the storage of pig slurry.
W. Berg and A. Model 96–98

Using the OVERSEER nutrient budget model to estimate on-farm greenhouse gas emissions.

Greenhouse gas and energy balance of dairy farms using unutilised pasture co-digested with effluent for biogas production.
Mark Lieffering, Paul Newton and Jürgen H. Thiele 104–108

Predicting livestock productivity and methane emissions in northern Australia: development of a bio-economic modelling approach.
E. Charmley, M. L. Stephens and P. M. Kennedy 109–113

Livestock methane emission and its perspective in the global methane cycle.
Keith R. Lassey 114–118

The methanogenic potential and C-isotope fractionation of different diet types represented by either C₃ or C₄ plants as evaluated in vitro and in dairy cows.
E. Klevenhusen, S. M. Bernasconi, M. Kreuzer and C. R. Soliva 119–123

Within- and between-animal variance in methane emissions in non-lactating dairy cows.

Impact of manure management of different livestock on gaseous emissions: laboratory study.
L. Loyon, F. Guiziou and P. Saint Cast 128–131

Methane emissions from beef cattle – a comparison of paddock- and animal-scale measurements.
Johannes Laubach, Francis M. Kellifer, Terry W. Knight, Harry Clark, German Molano and Adrienne Cavanagh 132–137

Verification techniques for N₂O emission at the paddock scale in New Zealand: FarmGas2006.
Mike Harvey, Elizabeth Pattey, Surinder Saggar, Tony Bromley, Dave Dow, Michael Kotkamp, Ross Martin, Rowena Moss and Jagrati Singh 138–141

Methane emissions from anaerobic ponds on a piggery and a dairy farm in New Zealand.
R. Craggs, J. Park and S. Heubeck 142–146

The effect of increasing rates of nitrogen fertiliser and a nitrification inhibitor on nitrous oxide emissions from urine patches on sheep grazed hill country pasture.
Coby J. Hoogendoorn, Cecile A. M. de Klein, Alison J. Rutherford, Selai Letica and Brian P. Devantier 147–151

Persistence of defaunation effects on digestion and methane production in ewes.
S. H. Bird, R. S. Hegarty and R. Woodgate 152–155

Impact of dicyandiamide application on nitrous oxide emissions from urine patches in northern Victoria, Australia.
K. B. Kelly, F. A. Phillips and R. Baigent 156–159

The effectiveness of dicyandiamide in reducing nitrous oxide emissions from a cattle-grazed, winter forage crop in Southland, New Zealand.
L. C. Smith, C. A. M. de Klein, R. M. Monaghan and W. D. Catto 160–164

Fumaric acid supplements have no effect on methane emissions per unit of feed intake in wether lambs.
German Molano, T. W. Knight and H. Clark 165–168

Dicyandiamide application plus incorporation into soil reduces N₂O and NH₃ emissions from anaerobically digested cattle slurry.
X. Tao, T. Matsunaka and T. Sawamoto 169–174

Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview.
D.N. Kamra, A.K. Patra, P.N. Chatterjee, Ravindra Kumar, Neeta Agarwal and L.C. Chaudhary 175–178

Nitrous oxide and methane emissions from a dairy farm stand-off pad.
J. Luo and S. Saggar 179–182

Methane emissions from feedlot cattle in Australia and Canada.

Diet composition at weaning affects the rumen microbial population and methane emissions by lambs.

The effect of oils fed to sheep on methane production and digestion of ryegrass pasture.
Isolation of sulfide oxidisers for desulfurising biogas produced from anaerobic piggery wastewater treatment in Taiwan.
Jung-Jeng Su, Yun-Chih Chang and Su-Ching Tang 193–197

Ammonia emissions from rough cattle slurry and from derived solid and liquid fractions applied to alfalfa pasture.
P. Balsari, E. Dinuccio, E. Santoro and F. Gioelli 198–201

Covering dairy slurry stores with hydrophobic fertilisers reduces greenhouse gases and other polluting gas emissions.
Naohisa Sakamoto, Masayuki Tani, Ian A. Navarrete, Masanori Koike, Kazutaka Umetsu 202–207

Nitrogen and energy balances of a combined anaerobic digestion and electrochemical oxidation process for dairy manure management.
Ikko Ihara, Kiyohiko Toyoda, Tsuneo Watanabe and Kazutaka Umetsu 208–212

Emissions of the indirect greenhouse gases NH₃ and NOₓ from Australian beef cattle feedlots.

The effect of level of intake and forage quality on methane production by sheep.
G. Molano and H. Clark 219–222

Reliability of the sulfur hexafluoride tracer technique for methane emission measurement from individual animals: an overview.
C. S. Pinares-Patiño and H. Clark 223–229

Methane emissions from grazing Jersey × Friesian dairy cows in mid lactation.

Methane emissions from dairy cattle divergently selected for bloat susceptibility.
C. S. Pinares-Patiño, G. Molano, A. Smith and H. Clark 234–239

Methane emissions from weaned lambs measured at 13, 17, 25 and 35 weeks of age compared with mature ewes consuming a fresh forage diet.
T. W. Knight, G. Molano, H. Clark and A. Cavanagh 240–243

Measurement of greenhouse gas emissions from Australian feedlot beef production using open-path spectroscopy and atmospheric dispersion modelling.
Zoë Loh, Deli Chen, Mei Bai, Travis Naylor, David Griffith, Julian Hill, Tom Denmead, Sean McGinn and Robert Edis 244–247

Approximation of baselines and greenhouse gas reduction scenarios for a small-scale Clean Development Mechanism on agriculture and livestock in ASEAN.
K. Kaku and A. Ikeguchi 248–250

An overview of the international context for greenhouse gas reductions.
Helen Plume, Roger Lincoln and Hayden Montgomery 251–254

E. Garcia-Apaza and O. Paz, I. Arana 255–259

Avian (IgY) anti-methanogen antibodies for reducing ruminal methane production: in vitro assessment of their effects.