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Abstract. We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly
inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the
initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real
positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy
c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the
number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method
has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to
the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field
test was carried out to test the validity of the proposed method and the experimental results show that the prearranged
magnets can be detected unambiguously and located precisely.
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Introduction

Detection, localisation and classification (DLC) of unexploded
ordnance (UXO) over large contaminated areas is an important
and challenging task inmilitary and non-military sites worldwide
(Li et al., 2013). Low false-alarm rates and a high probability
of detection can be achieved through the inversion of static
magnetic data when there is only an isolated UXO target
(Billings and Herrmann, 2003). Detection becomes a laborious
and time-consuming process for UXO cleanup when there are
many UXO and/or when the UXO are at significantly different
depths (Billings and Herrmann, 2003), due to interference
between anomalies from neighbouring targets, and geological
and instrumental noise.

Hansen and Simmonds (1993) proposed multiple-source
Werner deconvolution for the 2D inverse problem of magnetic
targets. Hansen and Suciu (2002) generalised the Euler
deconvolution method to the multiple source case and
implemented an algorithm for 3D magnetic bodies. Because
the multiple-source Euler deconvolution method requires
higher-order derivatives of the magnetic field, Hansen (2005)
proposed use of 3D multiple-source Werner deconvolution,
which requires only first-order derivatives. In principle these
methods can be adapted to detect UXO targets. However, a
major drawback of these algorithms is that the number of
magnetic targets needs to be defined before the actual
computation and this is not well defined in real applications.
Mikhailov et al. (2003) presented a technique for selecting the
best Euler solutions on the basis of a topological and geometrical
approach to outline the lateral extent of causative bodies and
provide more reliable estimates of their depth. Ugalde and
Morris (2010) used a kernel density distribution algorithm
to filter uncorrelated Euler solutions and a fuzzy c-means
clustering algorithm was used to obtain the centres of clusters

to estimate the geologic strike of the anomalous sources.
Although the method was designed to determine geologic
strike, it can potentially be adapted for UXO detection and
discrimination.

For the inversion problem of multiple UXO targets, Billings
and Herrmann (2003) proposed an automated detection algorithm
to estimate both the position and scale of dipole peaks utilising
the multi-resolution properties of wavelets. Davis et al. (2010)
developed the extended Euler deconvolution for the automatic
detection of putative UXO anomalies, and used the inversion
results within different sliding windows to estimate locations
and structural index (SI). The estimated SI is used to distinguish
source types. These two different methods can provide good
detection and discrimination.

In this paper, we propose an alternative technique that is
based on magnetic anomaly inversion and self-adaptive fuzzy
c-means clustering (SAFCM). In the magnetic anomaly inversion
stage, we obtain approximate locations instead of aiming for
exact inversion results. Although these initial locations have
some scatter about actual source locations, they form dense
clouds around the real position of each magnetic source. Then
SAFCM is proposed to cluster these approximate solutions,
according to the horizontal coordinates of the initially
estimated locations, to definitively determine the number of
magnetic sources. Finally, each cluster centroid provides an
accurate horizontal location for the corresponding magnetic
target.

Magnetic anomaly inversions

When there are many magnetic sources in the field site and
they are at significantly different depths, obtaining accurate
and precise locations using magnetic anomaly inversion is a
laborious and time-consuming process (Billings and Herrmann,
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2003). For this reason, we divide this problem into two steps. The
first step of our detection method inverts magnetic vector and
gradient tensor data for the approximate locations of magnetic
sources. The following stage identifies the clusters, to determine
the number of sources, and calculates more accurate locations for
the source associated with each cluster. Of course, to obtain good
results, we recommend using the best and most appropriate
algorithm for the first stage. Although we only investigate two
different inversion methods in this paper, other magnetic anomaly
inversion methods can also be used for the first stage.

Euler deconvolution

Euler deconvolution has become a standard tool to help
interpretation of potential field data in terms of depth and
geological structure. The method was developed by Thompson
(1982) to interpret 2D potential field anomalies and extended
by Reid et al. (1990) to be used on grid-based data. After
that, the Euler approach was applied to 3D grids (Silva and
Barbosa, 2003), and to gravity gradient tensor measurements
(Zhang et al., 2000). Nara et al. (2006) derived a set of linear
equations, essentially equivalent to the Euler deconvolution
method, that relate dipole location to components of the
magnetic field vector and elements of the corresponding
magnetic gradient tensor at a single measurement point. It is
commonly accepted that a magnetic source may be considered
as a magnetic dipole if the distance between the source centre
and the measurement point is at least 2.5 times larger than the
largest dimension of the source. In most cases UXO-like targets
satisfy this criterion, so the Nara method is applicable for
localisation of such targets.

As shown by Nara et al. (2006), for a point dipole source
the anomalous magnetic field vector B= [Bx By Bz ]T and the
anomalous magnetic gradient tensor G at measurement point
r1 = (x1, y1, z1)

T are related by

G

x1 � x0
y1 � y0
z1 � z0

2
64

3
75 ¼ �3B ð1Þ

where r0 = (x0, y0, z0)
T is the position of the magnetic dipole.

FromEquation 1,we can calculate the positionof themagnetic
dipole relative to the known measurement point. Although the
existing implementation of the Nara method (Nara et al., 2006)
is limited to a single source at a single measurement point, we
tested its generalisation to the case of multiple dipoles.

TheWindow-Nara method of this paper applies Equation 1 to
groups of neighbouring data points, within a sliding window
(see Figure 1). If n measurement points lie within the sliding
window, the Window-Nara method generates the following
overdetermined matrix equation:
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where G1, ���, Gn denote the measured magnetic gradient tensor
and B1, ���, Bn denote the measured magnetic field vectors in the

sliding window, and (xi, yi, zi), i = 1, ���, n denote the coordinates
of measurement points.

Equation 2 can be solved for the unknown coordinates (x0,
y0, z0) using the least-squares method. As shown in Figure 1,
measurements inside Window 1 are dominated by the effects of
Dipole 1 relative to the other dipoles, due to the inverse distance
cubed fall-off of the field and the 1/r4 fall-off of the gradient. The
estimated (x0, y0, z0) is therefore taken to be the approximate
position of Dipole 1. In a similar way, inversion of the measured
data within the Window M yields an approximate position of
Dipole 2.Moving the slidingwindow,wecanobtainmanygroups
of estimated locations which are shown as red dots in Figure 1.
These estimated locations cluster in the vicinity of eachmagnetic
dipole even when they do not group densely about the dipoles.
Then we can estimate the accurate locations of magnetic dipoles
by clustering these initial results in the following context.

Eigenvalue analysis

As an alternative to the Window-Nara method, eigenvalue
analysis of the measured magnetic gradient tensor can be used
in the detection of multiple UXO-like sources.

The magnetic gradient tensor is a symmetric real matrix,
hence there are three real eigenvalues with corresponding
eigenvectors that are mutually orthogonal (Pedersen and
Rasmussen (1990)). The eigenvalues are independent of the
orientation of the reference frame, so they are rotational
invariants of the magnetic gradient tensor. In the 1970s, Wynn
and Frahm (Wynn et al., 1975;Wynn, 1999) developed amethod
to determine both the direction to the dipole source and the
magnetic moment vector, normalised by dividing by r4, from
the eigenvalues and eigenvectors of the magnetic gradient
tensor measured at a single point. Wilson (1985) derived an
essentially equivalent algorithm, which is summarised in a more
accessible publication by Schmidt et al. (2004). The Wynn-
Frahm algorithm is outlined below, following the treatment
given by Gamey (2008). Choose two eigenvalues li and lj
such that they have the following relationship:�

li � lj � 0

jlij � jljj
ð3Þ

Calculate the following intermediate variables:�
s1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðli � ljÞ=ð2li þ ljÞ

p
s3 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðli þ 2ljÞ=ð2li þ ljÞ

p ð4Þ

The unit source-sensor displacement vector is then one of the
four column vectors that comprise the 3� 4 matrix given by

Window 1 Window M

Window N

Dipole 1 
Dipole 2 

Dipole 3 

Fig. 1. Sketch map of inversion of multiple magnetic dipoles.
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r~¼ V �
s1 s1 �s1 �s1

0 0 0 0

s3 �s3 s3 �s3
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whereV is a 3� 3 matrix, the columns of which are eigenvectors
of G.

Define the following variables:

t1 ¼ ðli þ 2ljÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðli � ljÞ=ð2li þ ljÞ

p
t3 ¼ ð�3li þ 6ljÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðli þ 2ljÞ=ð2li þ ljÞ
p

(
ð6Þ

For each of the four possible source-sensor directions defined
by Equation 5, the unit vector along the magnetic moment
direction is then the corresponding column vector within the
3� 4 matrix given by

m~¼ V �
t1 t1 �t1 �t1

0 0 0 0

t3 �t3 t3 �t3

2
64

3
75 ð7Þ

According to Equations 5 and 7, there is an inherent 4-fold
ambiguity in solutions for direction to the dipole and orientation
of its moment from eigenvalue analysis of magnetic gradient
tensor. In practice, at least two ‘ghost’ solutions can be ruled out
a priori (Clark, 2012). For example, if the magnetic source is
known to lie below the sensor, the two ‘ghost’ solutions that
are above the sensor can be eliminated. Furthermore, ‘ghost’
solutions obtained from different measurement locations are
inconsistent, whereas correctly chosen solutions from different
measurement points agree with one another, to a reasonable
approximation, and can be identified on this basis. An
approximate measurement of the anomalous field vector (or
even simply the sign of its components) is sufficient to reject
the ‘ghost’ solutions and remove ambiguity.

TheWynn-Frahm algorithm gives the direction to source and
orientation of its moment. We propose a supplemental equation
based on rotational invariants to calculate the distance to the
source and the magnitude of its moment. The magnitude of the
anomalous magnetic field vector and tensor magnitude of
magnetic gradient tensor generated by a magnetic dipole can
be calculated according the following equations (Wynn, 1999).

jBj ¼ m0
4p

M

R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðcos�Þ2 þ 1

q

CT ¼ jGj ¼ 3m0
4p

M

R4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðcos�Þ2 þ 2

q
8><
>: ð8Þ

where |B| is themagnitudeof theanomalousmagneticfieldvector,
CT is the tensor magnitude, |�| stands for the Pythagorean norm,
m0 is the permeability of free space, R denotes the distance
between the dipole source and the measurement point, and M
denotes the magnitude of its magnetic moment. f denotes the
angle between the dipolemoment vector and displacement vector
which can be calculated as follows from the eigenvalues of the
magnetic gradient tensor (Clark, 2012).

� ¼ cos�1ð l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�l22 � l1l3

q Þ; 0 � � � 180� ð9Þ

where l2 is the intermediate eigenvalue (i.e. l1 � l2 � l3),
which has the smallest absolute value, since the eigenvalues sum
to zero.

According to themeasuredmagnitude of anomalousmagnetic
field vector and magnetic gradient tensor, R and M can be
calculated from |B| and |G| using the eigenvalue analysis and
Equation 8. Multiplying R and M by the unit vectors
obtained from Equations 5 and 7 yields the location of the

magnetic dipole and its magnetic moment vector. Although
there is an inherent 4-fold ambiguity in obtaining solutions for
dipole location and magnetic moment, this ambiguity can be
resolved fairly easily in several ways (Clark, 2012) and the true
solution is identifiable.

Of course, the aforementioned localisation method is
designed for an isolated dipole source. We generalise it to the
detection of multiple magnetic sources by using a sliding
window. The positions estimated by eigenvalue analysis
method will tend to cluster around magnetic sources when
multiple magnetic sources exist in the detection area.

Vector measurements are relatively sensitive to orientation
and these lead to the location errors for the Window-Nara
method. Comparatively speaking, estimated locations based on
the eigenvalue analysis method are more robust if we do not
compensate accurately for variations of sensor orientation,
because of the eigenvalue analysis method only uses the
magnetic gradient tensor, as well as the field vector in the
estimation of R and M. The reason that we propose two methods
in this paper is to improve the robustness and reliability of the
inversion results based on information redundancy.

Cluster analysis of solutions of magnetic anomaly
inversion

Estimated locations based on the Window-Nara method and the
eigenvalue analysis method cluster approximately in the vicinity
of magnetic sources when multiple magnetic sources exist in
the detection area. As shown in Figure 1, the centroid of each
cluster can be used to estimate the location of magnetic sources.

Cluster analysis has been playing an important role in solving
many problems and cluster number is the most important
parameter (de Mantaras and Valverde, 1988). The clustering
results may deviate from the true structure of the given
datasets if the pre-defined cluster number is incorrect. So, the
cluster number cannot be given in advance in real applications
and it should be the optimal number found by the algorithm
automatically.

Calculation of the optimal cluster number belongs to the
problem of clustering validity. Many validity measures, for
determining the most appropriate number of clusters, have
been suggested in the literature. Some measures are based on
partition index and partition entropy (Li and Mukaidino, 1995;
Windham, 1982), while some are based on partition matrix
and data (Xie and Beni, 1991). In this paper, based on the
geometrical definition of clustering algorithm, we seek a
criterion that maximises the inter-cluster distances, while
minimising the intra-cluster distances. Accordingly, we choose
the ratio of inter-cluster distances and the intra-cluster distances
as the criterion of clustering validity. Then we define a new
validity function to achieve SAFCM algorithm to cluster the
initial locations.

Suppose that the estimated locations based on Window-Nara
or eigenvalue analysis method are X = {xj, j= 1, ���, n}. The
centroid of the complete solution set is defined as follows:

�x ¼

Xc

i¼1

Xn
j¼1

umij xj

n

ð10Þ

where c represents the number of clusters to be explored,
m(1 <m <¥) is the fuzzy weighting exponent whose value is
set equal to 2, following Bezdek (1981), and uij denotes the
membership degree of the jth sample belonging to the ith cluster
centre. The initialisation of uij and its detailed updating process
follow the procedure of Xie and Beni (1991).
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The validity function is defined as follows:

LðcÞ ¼

Xc

i¼1

Xn
j¼1

umij kvi � �xk2=ðc� 1Þ

Xc

i¼1

Xn
j¼1

umij kxj � vik2=ðn� cÞ
ð11Þ

where vi ¼
Pn

j¼1 u
m
ij xj=

Pn
j¼1 u

m
ij denotes the coordinates of the

ith cluster centroid.
In Equation 11, the numerator represents the weighted sum

of the squared distances between individual cluster centroids
and the overall centroids of the solution set, and the denominator
represents the weighted sum of squared distances between
individual solutions and each of the cluster centroids. c is the
best cluster number when L(c) reaches its maximum value.
Choosing initial values c= 2, L(c) = 0, and a termination
threshold e > 0 of the iterative process we can estimate the best
cluster number by an iterative process described by Bezdek
(1981) and Xie and Beni (1991).

Simulations

We tested the proposed method, using synthetic data generated
from eight dipoles with random locations, orientations, depths
and dipole moments. The depths ranged from 0.4 to 0.8m, with
dipole inclinations ranging between –90�and 90�, declination
between –180�and 180�, and dipole moment varying between
10 and 20 Am2. The background geomagnetic field was assumed
to be 5� 104 nT with inclination 55� and declination angle –5�.
The magnetic field vectors and magnetic gradient tensor were
calculated at 0.1m grid spacing.

Figure 2 shows the solutions generated by applying the
Window-Nara method to the synthetic dataset using a sliding
window with 3� 3 grid points. The inversion results show
that solutions cluster around the causative sources. Since the
potential field data is measured on a grid over the x-y plane,
resolution of the x-y positions is better than the depth resolution.
Unlike the cluster analysis of Ugalde and Morris (2010), which
uses three dimensional coordinates, we only use x-y coordinates
to cluster the locations. We obtained eight cluster centroids
based on the SAFCM method and these are consistent with the
prearranged number of dipole sources. Thus, we have detected
all of the magnetic dipoles and the estimated positions are
shown in Table 1. Although the proposed method is mainly
used to calculate the horizontal positions, it can also be helpful
to estimate depths. Combining the horizontal position and
magnetic gradient tensor at some known measurement points,
we can establish equations of magnetic moment and depth
which can be estimated by solving the equations. Of course,
due to the rapid fall-off rates of the magnetic field and gradient,
the estimated depth and magnetic moment have larger errors
than the horizontal positions.

We also applied the eigenvalue analysis method to the
synthetic dataset. The detailed inversion results are shown in
Figure 3 and Table 1. Figure 3 shows that the estimated initial
positions of magnetic targets based on the eigenvalue analysis
method are more numerous that those obtained using the
Window-Nara method. This is because the eigenvalue analysis
method is calculated based on the point-by-point analysis of
magnetic gradient tensor, which produces ghost solutions as
well as valid solutions. Again we obtained eight cluster
centroids using the SAFCM method and these are also
consistent with the prearranged number of dipole sources.

x (m)

y 
(m

)

nT–3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
× 104

Fig. 2. The magnitude of anomalous magnetic field vector |B| response for 8 randomly oriented
dipoles. The + indicates initial locations of magnetic dipoles using Window-Nara method with
window size of three. The indicates real positions of magnetic dipoles, and the indicates
estimated positions based on Window-Nara method and SAFCM.
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To simulate a more realistic case, we added Gaussian noise
to the theoretical magnetic field vector and magnetic gradient
tensor. The standard deviation of the Gaussian noise is the
1.5% of the maximum amplitude of the noise-free data. Then
the estimated positions of magnetic dipoles are shown in
Table 1. The simulation results show that the proposed method
is robust in the presence of random noise.

The synthetic datasets have successfully demonstrated the
proposed method for automatic picking of UXO-like anomalies.
All of the targets have been detected. Because of the overlapping

signals from neighbouring sources, there are some deviations
between the true positions and estimated positions. According
to Table 1, the maximum horizontal location error using the
Window-Nara method is 21.1 cm. For the eigenvalue analysis
method the maximum error is 26.6 cm.

The estimated locations based on both magnetic anomaly
inversion methods are affected by the grid spacing. In
addition, the Window-Nara method is affected by the size of
the sliding window. When the window width increases from
1 to 14, the Window-Nara method can detect all the existing

Table 1. Prearranged parameters of magnetic dipoles (numbered 1 to 8) and estimated locations based on SAFCM for two different initial
localisation methods. Distance units are metres.

Window–Nara Eigenvalue analysis Prearranged parameters
x y x y x y z mx my mz

1 Without noise –2.10 –2.11 –2.00 –1.92 –2 –2 0.8 9.88 –1.56 17.32
1.5% –1.98 –2.08 –2.04 –1.99

2 Without noise –1.41 2.17 –1.54 1.87 –1.5 2 0.7 2.75 4.76 9.52
1.5% –1.53 2.11 –1.62 1.99

3 Without noise 2.00 –1.47 1.92 –1.52 2 –1.5 0.5 9.06 3.30 11.49
1.5% 2.08 –1.51 1.95 –1.63

4 Without noise 1.29 2.48 1.35 2.28 1.5 2.5 0.6 7.53 5.27 9.19
1.5% 1.39 2.52 1.37 2.29

5 Without noise –0.05 0.01 –0.01 –0.01 0 0 0.4 9.75 9.75 11.57
1.5% 0.07 0.07 –0.01 –0.00

6 Without noise 2.40 0.88 2.38 0.96 2.5 1 0.4 7.04 5.91 9.19
1.5% 2.42 0.93 2.33 0.94

7 Without noise –2.08 0.05 –2.01 –0.02 –2 0 0.5 6.68 3.86 9.19
1.5% –1.98 0.14 –2.08 0.03

8 Without noise –0.02 –2.19 –0.08 –1.99 0 –2 0.7 9.08 2.94 12.29
1.5% 0.08 –2.08 –0.08 –2.08

nT

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y 
(m

)

–3

–2

–1

0

1

2

3

x (m)

–3 –2 –1 0 1 2 3

× 104

Fig. 3. The magnitude of anomalous magnetic field vector |B| response for 8 randomly oriented
dipoles. The + indicates initial locations of magnetic dipoles using the eigenvalue analysis method.
The indicates real positions of magnetic dipoles, and the indicates estimated positions based on
eigenvalue analysis method and SAFCM.
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eight dipoles and the location errors are shown in Figure 4. The
horizontal axis denotes the windowwidth of the sliding window.
For each window width, there are eight points which denote
the detected eight dipoles. Different values of eight points denote
the estimated errors relative to the real positions and these errors
appear to be random. The maximum difference is 20.1 cm in the
x direction and the maximum difference in the y direction is
19.1 cm. When the width of the sliding window is increased to
15, only seven dipoles are shown in Figure 5. The top right
dipole is missed. We note that the missed dipole is near a strong
positive anomaly. This tends to mask the source of the weak

anomaly because the Window-Nara method assumes only one
source per window. So we need to select appropriate window
sizes to observe different magnetic targets.

Application to real data

The reliability of detection will be strongly influenced by the
both geological noise and measurement noise. The method was
tested in a field trial with multiple UXO-like sources. The field
test was carried out in Shijiazhuang, China, and the study area
included three magnets which were placed on the ground.
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Fig. 4. Comparison between true and estimated dipole locations based on Window-Nara method with different
sizes of sliding window.
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Fig. 5. The magnitude of anomalous magnetic field vector |B| response for 8 randomly oriented
dipoles. The + indicates initial locations of magnetic dipoles using Window-Nara method with
a window size of fifteen. The indicates real positions of magnetic dipoles, and the indicates
estimated positions based on Window-Nara method and SAFCM.
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Strength of magnetic moments of the magnets are ~1–3 Am2.
A cross magnetic gradient tensor system consisting of four
fluxgate magnetometers (Yin et al., 2014) was used to measure
magnetic vector and tensor components. Note that we did not
install an inertial measurement unit to compensate for variations
in orientation of the magnetic gradient tensor system. Figure 6
shows the experimental area and magnetometers array.
Measurements were made over an area of 4m� 4m, the
magnetic gradient tensor system had an observation height

of 0.38m above the ground surface and the spacing was 0.5m
along the measurement lines. Because the measured grid was
not dense enough, we interpolated the data with a grid interval
of 0.25m. Then the inversion process was performed on a
window of 17� 17 grid points and the detection results based
on the proposed method are shown in Figure 7 and Figure 8, and
the actual and estimated positions are shown in Table 2.

According to the experimental results, we know that both
proposed methods can achieve detection of magnetic targets.

Fig. 6. Experimental system with magnetic gradient tensor system and three magnets.
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Fig. 7. The magnitude of anomalous magnetic field vector |B| response for three magnets.
The + indicates initial locations of magnets using the Window-Nara method with a window width
of three. The indicates real positions of magnets, and the indicates estimated positions based on
Window-Nara method and SAFCM.
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However, estimated errors of Window-Nara method are bigger
than errors of the eigenvalue analysis method, due to errors
in alignment of the measurement system, which introduces
substantial errors in the measured vector components. The
eigenvalue analysis method uses only the gradient tensor to
estimate the unit source-sensor displacement vector and the
unit magnetic moment direction, and the gradient tensor is
much less sensitive to orientation errors than the field vector.
Thus eigenvalue analysis gives more robust location estimates
than the Window-Nara method.

This experiment shows that the proposed method has
potential for the automatic picking of UXO-like anomalies for
large datasets without human interaction. The trial detected
all three prearranged magnets with acceptably small errors in
estimated locations.

Conclusions

We have developed a method for automatically detecting
multiple dipole-like sources using magnetic anomaly inversion
and SAFCM without human interaction. The magnetic anomaly
inversion focuses on the calculation of the approximate locations
of the magnetic targets. Then self-adaptive FCM is used to
obtain the number of the magnetic targets and the accurate
locations.

Analysis of synthetic data showed that all of the dipole
sources can be detected if the signal-to-noise ratio is
sufficiently high. The estimated horizontal locations agreed
well with the true locations. In a practical test of the proposed
method, a set of three magnets was successfully analysed, with
acceptably small location errors.
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