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Abstract. Seismic diffractions play a vital role in identifying discontinuous geological structures, such as tiny faults and
cavities which are important because of their close relationship with the reservoir properties of oil and gas. In this paper, we
focus on an extraction method for separation of seismic diffractions. The energy of reflection is usually much stronger than
that of the diffraction, thus, removing reflection becomes a key problem for diffraction applications. In order to extract
seismic diffractions accurately and stably, we propose an optimised regularisation method based on the local plane-wave
equation. By considering two constraints arising from the Sobolev penalty function and the difference operator, we build
a stable minimisation model for determining seismic slopes. In computation, an iterative method based on projection onto
a convex set for solving the nonlinear minimisation is developed, which can provide fast and accurate solutions. Subtracting
the predicted reflections from the seismic image, we can extract the seismic diffractions. Numerical experiments illustrate
the effectiveness of the diffraction extraction method in separating tiny faults, scatterers and cavities. Finally, a carbonate
reservoir field example is provided to demonstrate the high-resolution capability of the method in revealing small-scale
discontinuous geological features.
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Introduction

In exploration of oil and gas, accurately locating small-scale
geological features, such as tiny fault blocks, pinch outs, wedge
outs, reef edges or any abrupt change in facies (Kanasewich and
Phadke, 1988; Moser and Howard, 2008), can be a challenging
issue. Identifying these small-scale subsurface geologies is
necessary for prediction of reservoir condition. In the view of
seismic wave theory, diffractions including diffracted/scattered
waves carry information about these small-scale geologies, and
can be used for high resolution imaging.

Using seismic diffractions for studying faults and scatterers
has been emphasised in several studies (Krey, 1952; Hagedoorn,
1954;Kunz, 1960; Bansal and Imhof, 2005).Utilising the different
characteristics of reflections and diffractions, various methods to
separate reflections from diffractions have been developed. Landa
et al. (1987) successfully attenuated reflections and enhanced
diffractions in the common offset section by employing the
double-square-root traveltime moveout equation. As reflections
and diffractions have different kinematic characteristics with
respect to a point source, plane-wave destruction (PWD)
methods have also been investigated for separation of diffraction
(Taner et al., 2006; Fomel, 2002; Fomel et al., 2007). Based on
different focusing geometries of diffraction and reflection, the
focusing-defocusing diffraction imaging approach has been
proposed by Khaidukov et al. (2004). Several publications also
discuss modifying Kirchhoff migration by a weighting factor to
enhance diffractions (Kozlov et al., 2004; Zhang, 2004; Moser and
Howard,2008). Inorder to increase thesignal-to-noise (S/N) ratioof

diffractions in separation, multi-focusing (Berkovitch et al.,
2009) and common reflection surface (CRS) techniques (Dell
and Gajewski, 2011; Asgedom et al., 2011) were studied using
super-gather stacking. Furthermore, a windowed or steered version
of the multiple signal clarification method for overcoming limited
apertures and finite bandwidth of seismic data was developed by
Gelius et al. (2013).

In fact, during the process of seismic imaging, diffracted/
scattered waves will constructively stack with each other to
become a strong event. In a mathematical sense, seismic
reflections with a smooth property can be described by a
regularisation theory. Therefore, in this paper, we develop an
L2-norm diffraction extraction method by subtracting the
predictable reflections. To enhance stability, two regularising
constraints for adjusting the smooth property of reflection
events are imposed on the minimisation model.

The paper is organised as follows. First, we briefly introduce
the method of diffraction extraction. Then a new technique based
on regularisation for estimating of reflection dip angle is
proposed. Applications of the proposed method are given in
both synthetic and field examples.

Seismic diffraction extraction method

Plane-wave destruction filter and reflection slope
estimation

Identifying and removing reflections using the plane-wave
destruction technique has been considered by Claerbout (1992)
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and Fomel (2002). Generally, the plane-wave destruction filter
is defined by the local plane-wave differential equation

qPðt; xÞ
qx

þ s
qPðt; xÞ

qt
¼ 0; ð1Þ

where P(t, x) is seismic wave field and s denotes the local
slope varied with time and space. The general solution of the
differential Equation 1 is in the form of a plane-wave

Pðt; xÞ ¼ f ðt � sxÞ ð2Þ
with f (x) a waveform function. If the slope s is irrelevant to
time, then the Equation 1 can be transformed into the frequency
domain

dP̂ðo; xÞ
dx

� iosP̂ðo; xÞ ¼ 0: ð3Þ

The solution of the plane-wave differential Equation 3 in the
frequency domain is

P̂ðo; xÞ ¼ P̂ð0Þeiosx; ð4Þ
where P̂ðo; xÞ is the Fourier transform ofP(t, x), the complex part
of the exponential in Equation 4 represents t-trace shifting. With
the Z transform of Equation 4 and the Taylor expansion of the
complex exponential eios, estimation of the slope s reduces to
solving a nonlinear equation (Fomel, 2002)

CðsÞd ¼ rðsÞ; ð5Þ
where d is a vector of observed seismic data, the operatorC(s) is
the convolution of a 2D filter with seismic data and r is the
destruction residual. The form of the operator C(s) and the
seismic data d can be written as

CðsÞ¼

I 0 0 ��� 0

�P1;2ðs1Þ I 0 ��� 0

0 �P2;3ðs2Þ I ��� 0

��� ��� ��� ��� ���
0 0 ����PN�1;N ðsN�1Þ I

2
6666664

3
7777775
;d¼

s1
s2
s3

..

.

sN

2
6666664

3
7777775
;

wherePi,j(si) means prediction of trace j from trace i according to
the plane-wave equation, I is the identity operator, si, i= 1, 2, ���N
represent multi-traces. Assume the slope s is known, Equation 5
becomes a forward problem. Our aim is to invert the slope s,
which is an inverse problem.

Since the matrix operator C(s) contains the local slope
information, the slope information can be obtained by solving
a least-squares problem: kr(s)k!min. It is a nonlinear
optimisation problem. The nonlinearity comes from the
operator C(s), where the filter comes from a series of Z
transforms. Generally, the linear iterative method (e.g. Gauss-
Newton algorithm) is the most practical method and the solution
can be solved through:

C0ðskÞDskdþ CðskÞd ¼ r
�ðskÞ; ð6Þ

where C0(sk) is the differentiation of the filter operator C(sk)
with respect to the local slope. Therefore, the updated value Dsk
can be obtained by solving Equation 6, and the slope information
can be estimated using iterative methods.

It is evident that the residual r should approach zero if the
estimation of the slope is accurate enough. Therefore, instead
of Equation 6, we have the approximate equation

C0ðskÞDskdþ CðskÞd � 0: ð7Þ

The estimation of the slope can be updated using the formula:
sk+1 = sk+Dsk.

Regularisation model for determination of local slope

Solving for the slope s is an inverse problem. It can be proved
that C(s) is a compact operator. In reality, seismic wavefields
may be contaminated with noises and the plane-wave
assumption may be invalid where faults and conflicting
boundaries exist. Therefore, direct solution of the Equation 5
may be unstable, i.e. ill-posedness holds. To tackle the ill-
posed nature, we consider using the Tikhonov regularisation
technique.

Note that our aim is to minimise the norm of the residual
kr(s)k. To ensure stability, we establish the following
constrained minimisation model

J aðsÞ ¼ 1
2
krðsÞk2 þ a �WðsÞ ! min : ð8Þ

In Equation 8, a > 0 is the regularisation parameter, W(s)
is the stabiliser. We consider the form of the stabiliser W(�) as
the Sobolev penalty functional: WðsÞ ¼ 1

2

Ð
W
P

iðqsqtiÞ. Using
integration by parts, we have (Wang, 2007)

WðsÞ ¼ 1
2

ð

W

ðL1sÞðtÞsðtÞdt þ 1
2

ð

qW

X
i

qs
qti

nidS: ð9Þ

Here, n̂ ¼ ðn1; � � � ; npÞ denotes the outward unit normal to
the boundary qW, and L1 denotes the negative Laplacian:

L1 ¼

1 �1 0 � � � 0 0

�1 2 �1 � � � 0 0

..

. ..
. ..

. � � � . .
. . .

.
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2
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:

WithhomogeneousNeumannboundaryconditions,Equation9
reduces to the following form

WðsÞ ¼ 1
2
ðL1s; sÞ; ð10Þ

where (�,�) denotes the inner product over the L2(W ) space, and
L1 is the negative Laplacian.

Considering the complex structure of layers beneath the earth,
we further enforce another constraint on the solution, i.e. the
difference operator which is in the form

L2 ¼

1 �1 0 � � � 0 0

0 1 �1 � � � 0 0

..

. ..
. ..

. � � � . .
. . .

.

0 0 � � � 0 1 �1

0 0 0 � � � �1 1

2
66666664

3
77777775

Then, our minimisation problem becomes

J a;bðsÞ ¼ 1
2
krðsÞk2 þ a � ðL1s; sÞ þ bðL2s; sÞ ! min :

ð11Þ
With proper choice of the regularisation parameters a and b,

the two constraints can ensure the computational values remain
in the feasible regionof the true solutions, andhence the problem
represented by Equation 11 will lead to a stable approximate
solution of the desired solution (Wang et al., 2008). The values
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of a and b are used to balance the fitness of the predicted
traces to the observed traces. Best values of parameters a
and b should be calculated using the discrepancy principle,
however, much more computational effort will be added.
Therefore, in this paper, we only consider a priori values of
a and b. The values of a and b are set in an a priorimanner, i.e.
we choose a� b < 1.

Solving the minimisation model

The gradient of Ja,b(s) in Equation 11 can be calculated as

gJ a;bðsÞ ¼
1
2
d

ds
krðsÞk2 þ aL1sþ bL2s; ð12Þ

where

1
2
d

ds
krðsÞk2 ¼ r0ðsÞTrðsÞ: ð13Þ

We have the following proposition: s* is a critical point
for Equation 12 if and only if gJa,b(s) = 0. Therefore, if s

* is a
minimiser of Equation 11, then

s� ¼ PGðs� � xgJ a;bðs�ÞÞ ð14Þ
for any x > 0, where PG(�) denotes a projection onto the feasible
set of the slope.

Equation 14 gives us a fixed point iterative method. The
formula reads as

skþ1 ¼ PGðsk � xgJ a;bðskÞÞ: ð15Þ
Note that in computation, sk is a vector to be updated which

represents an updated slope field. Therefore, we propose the
following iterative scheme:

Step 1: Input the initial guess value of the slope s0; set the
iteration index k := 0;
Step 2: Iterate for k until convergence:
Step 3: Compute the negative gradient sk :=�gJa,b (sk )
Step 4: Line search: xk ¼ argmin

x>0
J a;bðPGðsk þ xskÞÞ

Step 5: Update the solution: sk+1 = PG (sk + xksk)
Step 6: Set k := k + 1, GOTO Step 2.

It can be proved that the iteration sequence {sk}k converges to
the minimiser of Equation 11 (Wang, 2007). The parameter xk
is the step size, which can be obtained by the Wolfe line search
criterion, i.e. the parameter xk should satisfy the following two
conditions (Yuan, 2008)

J a;bðsk þ xkskÞ � J a;bðskÞ þ oxkgTJ a;b;ksk ;

skTgJ a;b;kþ1 � ~oskTgJ a;b;k ;
ð16Þ

where gJ a;b;k ¼ gJ a;bðsk Þ, o and ~o are two constant numbers
requiring 0<o< ~o <1. In our numerical experiments, we fix
values of o as 0.1 and ~o as 0.4.

Workflow for extracting seismic diffractions

As mentioned above, in order to extract seismic diffractions,
we develop a stable reflection slope estimation method by
considering the regularisation technique and nonlinear iteration
algorithm. For clarity, the whole workflow is illustrated in
Figure 1. This diffraction extraction method can be carried out
in both the time and depth image, and also applied to prestack
or poststack data. To apply our proposed method, the only
requirement is that diffractions in the data should not be
severely attenuated.

Synthetic examples

In this section, we generate synthetic seismograms and test our
diffraction extracting algorithmon two typical geologicmodels: a
tiny fault-scatterer model and a basin-cavity model.

The tiny fault-scatterer model

The first model includes a simple geology with four vertical
faults and three diffractors. These faults are located, respectively,
at the horizontal positions of 0.6 km, 3.6 km, 6.6 km and 9.6 km,
with the scale as 1 wavelength, 1/2 wavelength and 1/4
wavelength and 1/8 wavelength. The diffractors are placed at
the horizontal locations of 2.1 km, 5.1 km and 8.1 km, with scale
as 1/2 wavelength and 1/4 wavelength and 1/8 wavelength,
respectively. The velocities used between the two layers are
2 km/s and 2.6 km/s. Synthetic data were generated by a
Kirchhoff forward modelling algorithm with a 20Hz Ricker
wavelet. The synthetic seismic record (Figure 2) shows that
there exist diffractions at the edges of vertical faults and
scatterers with different scales. The imaging results of the
seismic synthetic records are shown in Figure 3, which
includes both large-scale and small-scale geological features.
However, small-scale features seem invisible because of their
weak energies. In order to separate the discontinuous diffraction
information, we apply our method to calculate the slopes, and

Image data with both reflection and
diffraction migrated

Accurate slopes by regularisation
method

Reflections estimated by
PWD method

Diffractions extracted by subtracting
preliminary estimated reflections

Fig. 1. The workflow diagram of seismic diffraction extraction. ‘PWD
method’ refers to the plane-wave destruction method.
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Fig. 2. Synthetic seismic record of tiny fault-scatterer model.
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the reflection dip angle field is shown in Figure 4. From the dip
field section, we can easily see that faults and diffractors have
different features. With this reflected dip angle information, the
accurately estimated reflections are displayed in Figure 5. Then
following the procedure in the Workflow for extracting seismic
diffractions section above, we obtain the diffraction section
(Figure 6) by directly subtracting the prediction reflection data
(Figure 5) from the seismic image data (Figure 3).

In real applications, geologists often need to solve different
scale problems, likemacro-scale layer interpretation, micro-scale

fracture locating, fault tracking or reservoir analysis, which
exist in all stages of oil-gas exploration and development.
Reflections with strong energy have the advantage of revealing
macro-scale structures. Diffractions have weak energy but high
resolution in enhancing small-scale discontinuous objects.
Their resolution can even be smaller than a quarter of the
seismic wavelength in horizontal direction and one-sixteenth
of the seismic wavelength in vertical direction (Phadke and
Kanasewich, 1990). This synthetic experiment illustrates the
effectiveness of the proposed method in predicting reflections
and extracting diffractions.

The numerical basin-cavity model

The second model is a cavity-like geological structure relevant
to carbonate reservoirs. We perform diffraction extraction on
prestack depth migration image in this example. Six strings of
cavities are successively placed at the shallow parts from CMP
3.7 km to CMP 5.4 km and another two strings are respectively
placed at CMP 5.2 km and CMP 5.6 km. This model includes
cavities with scales from 5m to 20m in diameter. At the bottom,
we design a basin-like structure, which is usually the geological
exploration object. There are also several tiny faults in the central
and boundary of the basin. For this experiment, the main task is
to reveal cavities, tiny faults and diffractors, which control the
flow property of oil and gas. The synthetic data was generated by
a Kirchhoff algorithm and a shot gather is shown in Figure 7.

Using prestack Kirchhoff depth migration to shot gathers, we
get the seismic image shown in Figure 8. The imaging result
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Fig. 4. Reflection dip angle of tiny fault-scatterer model.

1 2 3 4 5 6 7 8 9 10
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

D
ep

th
 (

km
)

CMP (km)

Fig. 5. Reflections estimated by the proposed method.
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Fig. 6. Extracted diffractions of tiny fault-scatterer model.
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Fig. 7. Synthetic seismic record of basin-cavity model.
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Fig. 3. Image result of tiny fault-scatterer model.
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demonstrates large-scale structures, such as the horizontal and
dipping layers. However, cavity structures and small-scale
scatterers cannot be clearly identified. In seismic exploration,
reflections are generally used to interpret large-scale layers and
the stratigraphic features of the subsurface. For reservoir research
and oil/gas development, the resolution of seismic reflections
limited by Rayleigh criterion cannot satisfy the geological
requirements. Diffractions with higher resolution but weak
energy are generally masked in an invisible way by reflections.
Therefore, removing reflections is necessary for diffraction
analysis. Using the proposed regularisation method, we can
accurately estimate the reflection local slopes in Figure 9.
Correspondingly, the reflections can be predicted in Figure 10.
Although some cavities still have their shadows in the reflection
prediction image, their amplitudes differ from those in prestack
depth migration image. Following the procedure in Figure 1, we
obtain the diffraction extraction result illustrated in Figure 11.
To be clear, we mark the cavities with red circles and faults with
blackarrows.Thediffractionextractionprofile (Figure11) clearly
shows edges, cavities and inner details of a complex geological
model.

To further test the robustness of our regularisation method,
we add random noise into the simulated data. The noisy data
and the corresponding conventional imaging result are shown,
respectively, in Figures 12 and 13. With our regularisation
method, the results of reflection dip angle and extracted
diffraction are displayed in Figures 14 and 15 (the marks having
the same meanings as those in Figure 11). The simulation results

indicate that our method can extract correct diffraction
information even with noisy data. This verifies the robustness
of our method in extracting seismic diffractions.

Field data application

Small-scale faults and cavities are critical in oil and gas
exploration. In the following, we present a field data example
to demonstrate the effectiveness of applying the proposed
diffraction extraction method to identify and locate
distributions of the faults and cavities.

The 3D land seismic data, for studying carbonate reservoirs,
is fromWestern China. The Ordovician layer, displayed between
2.3 s and 2.7 s in vertical direction of Figure 16, proves to be
the main oil-gas generating and accumulating object. There are
many faults and cavities developed in this layer because of multi-
stage tectonic movements and underground rivers in the long
history of geological evolution. These discontinuous geologies
not only influence the connectivity property but also can provide
a storage space. After denoising and migration velocity analysis,
we get an inline prestack time migration image by Kirchhoff
migration in Figure 16. We emphasise that no attenuation of
seismic diffractions is performed during the noise-removal
process. The prestack time image can illustrate macro-scale
geological layers. However, tracking faults and identifying
small-scale cavities are still difficult because of the limited
resolution of reflections by Rayleigh criterion. Therefore, in
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Fig. 10. Reflections estimated by the proposed method.
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Fig. 11. Extracted seismic diffraction profile of basin-cavity model. Black
arrows and the red circle indicate faults and cavities, respectively.
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order to improve seismic resolution, diffractions should be
extracted to reveal discontinuous geologies. We apply the
proposed regularisation method to obtain a reflection dip angle
section in Figure 17, where the smooth and discontinuous
events behave differently. The smooth events generally imply
macro-scale layers with stable amplitudes and the discontinuous
events are more likely to indicate faults and cavities. Using the
extracted local slopes, we get diffraction profile in Figure 18
definitely displaying small-scale discontinuous objects.

At the top of the diffraction section (e.g. marked by the red
circle), many karsts that have developed in sedimentary layers
emerge, with the possibility of becoming storing spaces for
petroleum. In the deep layers, many small-scale cavities
show themselves in diffraction section (e.g. marked by the
red square). Tiny faults can be also traced in the diffraction
section shown by black arrows. Also, we can observed a
phenomena that cavity often develops with faults. This
interesting story seems to be untold in the conventional
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Fig. 15. Extracted diffraction profile of basin-cavity model (noisy case).
Black arrows and the red circle indicate faults and cavities, respectively.
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Fig. 17. Reflection dip angle estimated by the regularisation method.
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Fig. 13. Conventional image section of basin-cavity model (noisy case).
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added.
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image (Figure 16) but quite clear in the diffraction image
(Figure 18).

From the field data example, we conclude that removing
reflections can really reveal higher resolution of diffractions.
This field application demonstrates the efficiency of the
proposed regularised diffraction extracting method in revealing
small-scale cavities and tiny faults.

Discussion and conclusion

This paper addresses the challenging issues of how to effectively
extract diffractions. From a practical view, we require the seismic
image without suppressing diffractions. That is to say, a seismic
image with both reflections and diffractions migrated properly,
which means that diffractions are not severely attenuated in the
denoising process and the imaging kernels are not designed
against diffractions. We remark that extraction of the
diffraction energy can be performed on unmigrated seismic
data or the migrated seismic data. However, for complex
subsurface structures, seismic diffractions are generally
coupled with each other and distributed in a large region.
These features make separation of diffraction hard to perform
in unmigrated data.

It should be pointed out that straightforward use of diffraction
cannot be fully made without the removal of reflections. To
resolve the fine details beyond reflection imaging, we have
presented a regularisation method for extracting diffractions.
The method incorporates two constraints, the negative Laplacian
operator and the difference operator to the solution, and can
ensure a stable and unique solution. In the slope computation,
we solve a nonlinear minimisation problem via fixed point
iteration. Applications of the method in both synthetic and field
examples demonstrate the ability of the proposed method in
identifying small-scale discontinuous geological features.
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Fig. 18. Seismic diffraction profile obtained by the regularisation method.
The red circle indicates karsts, the red square indicates small-scale cavities and
black arrows indicate tiny faults.
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