
The magnetotelluric tensor: improved invariants for its decomposition,
especially ‘the 7th’

Frederick E. M. Lilley

Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia.
Email: ted.lilley@anu.edu.au

Abstract. A decomposition of the magnetotelluric tensor is described in terms of quantities which are invariant to the
rotation of observing axes, and which also are distinct measures of the 1D, 2D or 3D characteristics of the tensor and so may
be useful in dimensionality analysis. When the in-phase and quadrature parts of the tensor are analysed separately there are
two invariants which gauge 1D structure, two invariants which gauge 2D structure, and three invariants which gauge 3D
structure. A matrix method similar to singular value decomposition is used to determine many of the invariants, and their
display is then possible on Mohr diagrams. A particular set of invariants proposed some seventeen years ago is revised to
yield an improved set. Several possibilities for the seventh invariant are canvassed, and illustrated by examples from field
data. Low values of Db, the invariant now preferred for ‘the 7th’, may indicate a particular simplification of otherwise
complicated three-dimensional structure.
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Introduction

The magnetotelluric (MT) method of geophysics exploits the
phenomenon of natural electromagnetic induction which takes
place at and near the surface of Earth. The purpose is to determine
information about the electrical conductivity structure of Earth,
upon which the process of electromagnetic induction depends.
The MT method has been well described recently in books by
Simpson and Bahr (2005), Berdichevsky and Dmitriev (2008)
and Chave and Jones (2012). The reader is referred to these
publications for general information about the method and its
results.

In the most simple form of the method, data are observed as
time-series at a single field site. Typically three components
(north, east and vertically downwards) of the fluctuating
magnetic field are observed, and two components (north and
east) of the fluctuating electric field. The electric field is
measured between grounded electrodes typically several
hundred metres apart. Strong static vertical electric fields may
exist between clouds in the atmosphere and Earth’s surface
(Young and Freedman, 2016: 766) and occasionally be
discharged by lightning strikes. Generally, however, the local
fluctuating vertical electric field is taken as zero, because no
current which is due to electromagnetic induction in the Earth
flows vertically at the ground-air interface.

The traditional MT method expresses the two horizontal
electric field components as linear functions of the two
horizontal magnetic field components. The natural signals
observed cover a frequency band from 0.001 to 1000Hz. The
signals have a variety of causes, the relative importance of
which varies with position on the Earth, especially latitude.
Recorded data are transformed to the frequency domain, and
interpretation proceeds based on frequency dependence.

The reductionof observed time-series to the frequencydomain
is thus fundamental to the MT method. In the frequency domain

various transfer functions are determined, encapsulating the
response of the observing site to the source fields causing the
induction.

Electromagnetic theory predicts that observed data will have
particular qualities if the geological structure in which the
induction is occurring has simplifying electrical-conductivity
characteristics. For the most general case of no simplifying
characteristics, below ground surface the geological electrical
conductivity varies in all three possible space dimensions,
and is denoted 3D. The simpler ‘two dimensional’ or 2D case
arises when there is one particular horizontal direction in
which the electrical conductivity does not vary; this direction
of constant conductivity structure is then the ‘strike’ of the 2D
structure.

The one dimensional or 1D case arises when the conductivity
below ground level varies with depth only, and may be described
as ‘horizontally layered’. There is then no variation in any
horizontal direction. The case of general uniform conductivity,
i.e. no variation with depth either, is also commonly described
as 1D.

A fundamental part of the data-reduction process arises as
the ‘rotation’ of observed data. By ‘rotation’ is meant an
examination of the observed transfer functions, to calculate the
values they would take were the observing axes to be physically
rotated. The purposes of rotation are to expose evidence of
geologic dimensionality in the data; to give values of strike
direction in the case of 2D data; and to give ‘nearest strike
direction’ (in some sense) if the data, though 3D, may be
approximated as 2D.

When taking and analysing the in-phase and out-of-phase
(‘quadrature’) parts of a tensor separately, frequency by
frequency, the Mohr diagram representation is an informative
way to display the results, and to distinguish the different cases
of 1D, 2D and 3D electrical conductivity structure. Various
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quantities which do not vary when the axes are rotated, and so
are ‘rotational invariants’, are obvious on a Mohr diagram.

The 2� 2 structure of the MT tensor means it is also well-
suited to analysis by the methods of linear algebra. A method
which reduces a tensor to 2D form by anti-diagonalisation is
very similar to traditional singular value decomposition (SVD),
and is found to give one of the sets of invariants displayed on
Mohr diagrams.

Three tensors are basic in contemporary MT practice. They
are the distortion tensor as discussed by Lilley (2016); the MT
tensor as discussed in this paper; and the ‘phase tensor’ of
Caldwell et al. (2004), the invariants of which it is intended to
review in a third and subsequent paper of this series.

Notation

Denoting by E and H respectively the electric and magnetic
fluctuations at an observing site on the surface of Earth, the
common representation of the magnetotelluric tensor Z which
links these fluctuating fields is

E ¼ ZH ð1Þ
of components

Ex

Ey

� �
¼ Zxx Zxy

Zyx Zyy

� �
Hx

Hy

� �
ð2Þ

The original electric and magnetic fluctuation data are
recorded as time-series, and then transformed to the frequency
domain. In Equations 1 and 2 all quantities are complex functions
of frequencyo, and a time dependence of exp(iot) is understood.

In this paper the subscripts p and q will be used to denote in-
phase and quadrature parts of a complex quantity. For example
the complex quantity Zxy in Equation 2 is expressed

Zxy ¼ Zxyp þ i Zxyq ð3Þ
Note that adopting the (equally valid) time-dependence of

exp(–iot) would change the sign of Zxyq. Such a change of sign
may be misinterpreted if its cause is not clearly understood,
especially in the context of strong distortion. Thus when using
established computer procedures for the time-series analysis
of observed data it is important to be clear on whether those
procedures are based on a time dependence of exp(iot) or
exp(–iot).

The subscripts p and q will also be used to denote quantities
which are derived from the in-phase and quadrature parts
respectively of complex quantities, but which are themselves
not recombined to give a further complex quantity. Examples are
the quantities Cp and Cq, to be introduced below.

Also in this paper, for compactness of text, a 2� 2 matrix
such as that for Z in Equation 2 will in places be written [Zxx,
Zxy; Zyx, Zyy]. A rotation matrix R(y) will be introduced

Rð�Þ ¼ ½cos �; sin �;� sin �; cos �� ð4Þ

Units of E, Z and H

Following the International System (SI) (and see also Hobbs
(1992)), the units of electric field E are volt/metre (V/m); of
magnetic intensity H are ampere/metre (A/m); and of the
elements of Z are ohm (W). When thus determined from E and
H measured in the units described, Z is the ‘magnetotelluric
impedance tensor’ (Weidelt and Chave, 2012: 124).

However, often the magnetic field is observed with
apparatus which gives a measurement of the magnetic induction
B in units of tesla. Using such magnetic induction values rather

than magnetic intensity values to determine Z then gives the
‘magnetotelluric response tensor’ (Weidelt and Chave, 2012).

Further there is a tradition of observation in ‘practical field
units’, for which the electric field is measured in millivolt/
kilometre (mV/km), and the magnetic induction is measured in
nanotesla.

Under these circumstances, invoking the relationship

B ¼ moH ð5Þ
(where mo is the permeability of free space and has the value
4p� 10–7 in the SI units of henry/metre) allows response tensor
values to be converted to impedance tensor values. The following
conversion factors may be useful.

Firstly let Z1 be the numerical value of a tensor element
determined by values of E measured in V/m and of H
measured in A/m. Secondly let Z2 be the numerical value of
the same impedance element determined by values of E
measured in V/m and of B measured in tesla. Thirdly let Z3 be
the numerical value of the same impedance element determined
by values of E measured in mV/km and of B measured in
nanotesla. Then:

Z1 ¼ Z2 � 4p� 10�7 ð6Þ
and

Z1 ¼ Z3 � 4p� 10�4 ð7Þ
The components of Z (such as Zxy) are often converted

to and quoted as values of ‘apparent resistivity’, in units of
Wm. This practice arises from the case of the simple structure
of a uniform half-space. Theory shows that the (true) resistivity
r in Wm of such a half-space is given by

r ¼ 1
om

j E
H
j2 ð8Þ

where the electric and magnetic fields E (in V/m) and H (in
A/m), fluctuating at angular frequency o, are measured on the
half-space surface at right angles to each other, and where
the permeability m may be taken as that for free space (mo) as
above.

When the resistivity structure is more complicated, the
presentation of observed data as apparent resistivity ra, again
in Wm, is often still found to be useful. Thus, for example,
an apparent resistivity raZxy for the Zxy component of the
tensor may be expressed as

raZxy ¼
1
om

jZxyj2 ð9Þ

and calculated as

raZxy ¼
1
om

ðZxyp2 þ Zxyq
2Þ ð10Þ

A phase fZxy for raZxy may be calculated as

fZxy ¼ arctan
Zxyq
Zxyp

 !
ð11Þ

where the signs of Zxyp and Zxyq may be taken into account to
give a phase value over a range of 360�.

When the tensor element Zxy is evaluated in the practical units
of mV/km/nanotesla, Equation 9 takes the well-known form

raZxy ¼ 0:2T jZxyj2 ð12Þ
again giving the apparent resistivity in Wm, where T is the
period in seconds (s), i.e. T= 2p/o. Equations 9 and 12 show
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that for the case of uniform resistivity, Zxy will have a period
dependence of T –1/2. Such a T –1/2 dependence of Zxy is often
approximately the case generally, and to take it into account
there may be a benefit in presenting the quantity Zxy T1/2 rather
than the quantity Zxy, as will be shown in some examples below.
At high frequencies at many sites MT observations sense the
surface layer as a 1D structure, and in such cases the calculated
apparent resistivity of this layer may be a helpful benchmark in
interpretation.

Finally it should be emphasised that the units taken for Z in
Equation 1 can be chosen to be those which are most useful. The
important matter when interpreting MT data, for instance by
fitting models, is that the responses of such models are calculated
in the same units as those of the observed data. To expand this
point further, when interpreting MT data there may be occasions
when modelling rotational invariants, rather than modelling
the (rotation-dependent) observed tensor elements, may be
constructive.

It may also be pertinent to note that when tensor elements
are calculated in the units of W, Equation 8 above cautions
strongly against any temptation to regard such numbers as a
‘rule of thumb’ estimate of the apparent resistivity of the
material in Wm.

The MT tensor upon rotation of the horizontal axes

Upon rotation of the horizontal measuring axes clockwise by
angle y0 as shown in Figure 1, Equation 1 changes to

E0 ¼ Z 0H0 ð13Þ
where

E0 ¼ Rðu0ÞE ð14Þ
H0 ¼ Rðu0ÞH ð15Þ

and so

Rðu0ÞE ¼ Z 0Rðu0ÞH ð16Þ
or, more fully,

Rðu0ÞE ¼ Z 0xx Z 0xy
Z 0yx Z 0yy

� �
Rðu0ÞH ð17Þ

whence

E ¼ Rð�u0ÞZ 0Rðu0ÞH ð18Þ

and so

Z ¼ Rð�u0ÞZ 0Rðu0Þ ð19Þ
Thus the matrix [Zxx, Zxy; Zyx, Zyy] upon rotation of axes

changes to [Z0xx, Z0xy; Z0yx, Z0yy] according to

Z 0xx Z 0xy
Z 0yx Z 0yy

� �
¼ Rð�0Þ Zxx Zxy

Zyx Zyy

� �
Rð��0Þ ð20Þ

of in-phase part

Z 0xxp Z 0xyp
Z 0yxp Z 0yyp

" #
¼ Rð�0Þ Zxxp Zxyp

Zyxp Zyyp

" #
Rð��0Þ ð21Þ

and quadrature part

Z 0xxq Z 0xyq
Z 0yxq Z 0yyq

" #
¼ Rð�0Þ Zxxq Zxyq

Zyxq Zyyq

" #
Rð��0Þ ð22Þ

Expanding Equation 21 shows that the elements of the two
matrices Z and Z0 are related by the equations

Z 0xxp ¼ ðZxxp þ ZyypÞ=2þ Cp sinð2�0 þ bpÞ ð23Þ
Z 0xyp ¼ ðZxyp � ZyxpÞ=2þ Cp cosð2�0 þ bpÞ ð24Þ
Z 0yxp ¼ �ðZxyp � ZyxpÞ=2þ Cp cosð2�0 þ bpÞ ð25Þ
Z 0yyp ¼ ðZxxp þ ZyypÞ=2� Cp sinð2�0 þ bpÞ ð26Þ

where

Cp ¼ 1
2

ðZxxp � ZyypÞ2 þ ðZxyp þ ZyxpÞ2
h i1

2 ð27Þ

(taking the positive square root) and bp is defined by

tan bp ¼ ðZxxp � ZyypÞ=ðZxyp þ ZyxpÞ ð28Þ
It is also useful to define an angle mp as

tan mp ¼ ðZyyp þ ZxxpÞ=ðZxyp � ZyxpÞ ð29Þ
and a (positive) quantity ZLp as

ZL
p ¼ 1

2
ðZxxp þ ZyypÞ2 þ ðZxyp � ZyxpÞ2
h i1

2 ð30Þ

with an auxiliary angle bp
0 as

tan b0p ¼ ðZ 0xxp � Z 0yypÞ=ðZ 0xyp þ Z 0yxpÞ ð31Þ
The angles bp, mp and bp

0 may all be determined with a range of
360�. Then

�0 ¼ ðb0p � bpÞ=2 ð32Þ
Note that (Z0xxp +Z

0yyp), (Z0xyp � Z0yxp), Cp and ZLp are
independent of y0, and so are ‘rotational invariants’.

Expanding Equation 22 in the same way as Equation 21
produces for the quadrature part of the tensor a set of equations
just like 23 to 32, with subscript q replacing subscript p. Then
(Z0xxq+Z

0yyq), (Z
0xyq – Zyxq), Cq and ZLq are also seen to be

independent of y0, and so also are rotational invariants.

The depiction of MT tensors using Mohr diagrams

The general case: 3D structure

It can be seen from Equations 23 and 24 that plotting Z0xxp against
Z0xyp as the axes are rotated (i.e. y

0 varies) defines a circle, known
(with its axes) as a Mohr diagram. An example is shown in

O

X

X ′

Y

Y ′

q ′

Fig. 1. The rotation of MT observing axes clockwise by angle y0, from
OX and OY (north and east) to OX0 and OY0.
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Figure 2a, for the general case of 3D conductivity structure. For
the in-phase case, the centre of the circle is at the point [(Zxyp –
Zyxp)/2, (Zxxp+Zyyp)/2] and the radius of the circle is Cp.
Different points on the diagram can be checked to confirm that
Equations 23 to 32 for the rotation of axes are obeyed. Figure 2a
further shows how axes for Z0yxp and Z0yyp may be included on
the diagram, to display the variation of these components also.

Following the same procedure for the quadrature part of
an MT tensor produces a similar Mohr diagram, and diagrams
for in-phase and quadrature data may be presented as adjacent

figures. Such pairs are shown in Figure 2b, c, which also draws
attention to the particular cases of 2D and 1D conductivity
structure to which the 3D case simplifies.

When axes for Z0yxp and Z0yyp are included it is clear to see
why the phase of Zxy (as the arctangent of the ratio Zxyq/Zxyp of
two evidently positive quantities Zxyq and Zxyp) is commonly in
the range 0� to 90�, and the phase of Zyx (as the arctangent of
the ratio Zyxq/Zyxp of two evidently negative quantities Zyxq
and Zyxp) is commonly in the range 180� to 270� (or equivalently
–180� to –90�).

Z L

C

(Zxx+Zyy)/2

(Zxy–Zyx)/2

Z ′xxp

Z ′xyp

Z ′xxq

Z ′xyq

Z ′xxp

Z ′xyp

Z ′xxq

Z ′xyq

Zp
c Zp

u Zq
c Zq

u 

Zp Zq

0 0

0 0

(a)

(b)

(c)

In-phase

marks observed point (Zxy, Zxx)

marks general point (Z ′xy, Z ′xx) after axes rotation of  q ′

Z ′xy

Z ′xx

Z ′yy

Z ′yx

0

0

b

bb

m

b ′
2q ′

Quadrature

Fig. 2. (a) A Mohr diagram, typical of both the in-phase and quadrature parts of an MT tensor. Add a
subscript p to every quantity shown to get a diagram for the general form of the in-phase part of the tensor, or
add a subscript q to every quantity shown to get a diagram for the general form of the quadrature part of
the tensor. (b) The 2D case; radial arms for the in-phase and quadrature parts of the tensor are now parallel,
with both circle centres on the horizontal axes. (c) The 1D case, for Z observed as [0, Z; –Z, 0]. The circles
have contracted to their central points.
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2D structure

When the geologic structure is 2D and the axes are rotated to be
along and across geologic strike, the rotated MT tensor will have
the form [0, Zn; –Zc, 0] where it is expected that all of Znp, Z

n
q, Z

c
p

and Zcq will be positive.
At that rotation the terms Z0xxp and Z

0yyp in Equations 23 and
26 are both then zero. This circumstance produces two
demands, firstly that

Zxxp þ Zyyp ¼ 0 ð33Þ
with the consequence that the centre of the Mohr circle lies on
the Z0xyp axis, and secondly that

Cp sinð2�0 þ bpÞ ¼ 0 ð34Þ
For non-zero Cp there are thus two solutions for y0, notably

2�0 þ bp ¼ 0; p ð35Þ
i.e.

�0 ¼ �bp=2; ðp=2� bp=2Þ ð36Þ
There is thus an ambiguity of 90� in the determination of
angle y0, which (see Figure 1) is now the strike angle, relative
to the initial observing axes.

The same procedure as described so far in this section may be
followed for the quadrature part of an MT tensor, to produce
a set of equations like Equations 33 to 36 with subscript p
replaced by subscript q. Then as shown in Figure 2b, the
diagram becomes a pair of circles with origins on the Z0xyp
and Z0xyq axes; angles mp and mq are zero. Because for 2D the
in-phase and quadrature strike directions are the same,

bp ¼ bq ð37Þ
and the in-phase and quadrature radial arms are parallel.

Zn and Zc are described as the TE and TM (or vice-versa)
modes of 2D induction, where TE stands for ‘transverse electric’
and TM stands for ‘transverse magnetic’. These modes are
also sometimes called E–pol and B–pol respectively, for ‘E-
polarisation’ and ‘B-polarisation’.

1D structure

If a 2D case simplifies further to become a 1D case, then
Zn= Zc=Z say, and the tensor for all rotations has the form
[0, Z; –Z, 0], where Zp and Zq are both positive. With
reference to Equations 24 and 25, the terms Z0xyp and Z0yxp
must be constant for varying y0, demanding that

Cp ¼ 0 ð38Þ
Because the lengths of the two radial arms thus vanish, the

diagram reduces to a pair of points on the horizontal axes, as
shown in Figure 2c.

‘Singularity’ of a tensor

A tensor is said to be singular when it has a determinant of zero,
and cannot be inverted (Strang, 2003). Mohr diagrams display
this situation clearly: when the determinant is zero, the circle will
go through the origin of axes (in Figure 2a,ZL=C).With a further
construction which may be added to Figure 2a, a Mohr diagram
also shows the determinant quantitatively (Lilley, 2016: 96).

As can be seen from inspection of Figure 2 generally, it is
possible for 3D and 2D cases to be singular, but not 1D cases. The
condition of singularity may be thought of as the extreme limit of
anisotropy in a tensor (whether 2D or 3D).

Application of a matrix method similar to SVD

Where as Equations 13, 17 and 20 involve rotating the E and H
axes together, the reduction of the observed tensor to a 2D form
may be achieved by rotating the E and H axes separately. The
rotations are by angles yep and yhp respectively for the in-phase
part of the tensor, and by angles yeq and yhq respectively for the
quadrature part of the tensor. Each procedure is very similar to
traditional singular value decomposition (Strang, 2003), but in
both cases the relevant 2� 2 matrix is anti-diagonalised, rather
than diagonalised.

Thus, taking the H field to be completely in-phase, solutions
are sought for

Rð�epÞEp ¼
0 �p

�Yp 0

� �
Rð�hpÞH ð39Þ

and

Rð�eqÞEq ¼
0 �q

�Yq 0

� �
Rð�hqÞH ð40Þ

where it is instructive to compare the form of these equations
with Equation 17.

Equation 39 may be expressed as

Ep ¼ Rð��epÞ
0 �p

�Yp 0

� �
Rð�hpÞH ð41Þ

and Equation 40 expressed as

Eq ¼ Rð��eqÞ
0 �q

�Yq 0

� �
Rð�hqÞH ð42Þ

From Equation 41 the in-phase part of the tensor, Zp, is
factored into

Zxxp Zxyp
Zyxp Zyyp

" #
¼ Rð��epÞ

0 �p

�Yp 0

� �
Rð�hpÞ ð43Þ

and from Equation 42 the quadrature part is factored into

Zxxq Zxyq
Zyxq Zyyq

" #
¼ Rð��eqÞ

0 �q

�Yp 0

� �
Rð�hqÞ ð44Þ

Again, it is instructive to compare Equations 43 and 44 with
Equation 20.

The four components of Equation 43 may now be solved
for the four unknown quantities yep, yhp, �p and Yp to yield:

�ep ¼ 1
2

arctan
Zyyp � Zxxp
Zxyp þ Zyxp

þ arctan
Zyyp þ Zxxp
Zxyp � Zyxp

" #
ð45Þ

�hp ¼ 1
2

arctan
Zyyp � Zxxp
Zxyp þ Zyxp

� arctan
Zyyp þ Zxxp
Zxyp � Zyxp

" #
ð46Þ

�p �Yp ¼ cosð�ep þ �hpÞ½ðZxyp þ ZyxpÞ
�tanð�ep þ �hpÞðZxxp � ZyypÞ�

ð47Þ

and

�p þYp ¼ cosð�ep � �hpÞ½ðZxyp � ZyxpÞ
þtanð�ep � �hpÞðZxxp þ ZyypÞ�

ð48Þ

Similarly Equation 44 may be solved to give an equivalent
set of solutions for the quadrature part of a tensor: the quantities
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yeq, yhq, �q and Yq are given by Equations 45, 46, 47 and 48
with subscript p replaced by subscript q. The quantities �p, �q,
Yp and Yq are here termed ‘principal values’.

Note that Equations 29, 45 and 46 give

mp ¼ �ep � �hp ð49Þ
and Equations 28, 45 and 46 give

bp ¼ �ð�ep þ �hpÞ ð50Þ
Equations 30, 45, 46 and 48 give

ZL
p ¼ ð�p þYpÞ=2 ð51Þ

and Equations 27, 45, 46 and 47 give

Cp ¼ ð�p �YpÞ=2 ð52Þ
The quantities mp, bp, Z

L
p and Cp in Figure 2 are thus related to

the quantities which arise in the SVD analysis, and a Mohr
diagram is seen to also display the SVD results of the present
section.

An example which illustrates this point and uses the
equivalent notations is shown in Figure 3. The figure has been
drawn for the tensor (with all real components)

Zp ¼ ½�1; 7;�4; 3� ð53Þ
The values of yep, yhp,�p andYp evaluated by Equations 45

to 48 above are 31.7�, 21.4�, 8.09 and 3.09 respectively. As a
tutorial exercise, these values may also be read graphically off
the figure.

While the use of Equations 45 to 48 should be straightforward
to determine the quantities yep, yhp, �p and Yp (and similarly
yeq, yhq, �q and Yq) it is possible also to use a standard
SVD algorithm, and adapt the results to give the desired
quantities. Lilley (2012) discusses the results given if a matrix
such as that of Equation 53 is put into a standard SVD computing
routine.

Thus by rotation of the electric and magnetic axes separately,
the example MT tensor has been reduced to an ideal 2D form.
This exercise may be regarded as a standard SVD but adjusted
to anti-diagonalise, rather than diagonalise the matrix.

In a search for thenearest 2Dmodel in a3Dsituation the results
thus obtained may be valuable to bear in mind. On the grounds
that distortion occurs in the electric field rather than the magnetic
field, the rotatedmagnetic axesmay give a useful indication of an
‘approximate 2D regional strike’. The rotated electric axes may
show a dominant direction of electric field distortion.

observed point 

(Zxxp = –1, Zxyp =7)

Z ′xyp

Z ′xxp

5.50

1

qep– qhp

2qep

p

Ψp

u1 v1

u2
v2

Ex
Ex ′

Ey

Ey ′

Hx Hx ′

Hy

Hy ′

qep

qhp

ϒ

Fig. 3. Diagram showing the Mohr representation of the matrix in Equation 53, analysed by the SVD
method described in the text. The values of yep, yhp,�p andYp are evident as 32�, 21�, 8.1 and 3.1. The axes
for Ex0, Ey0 and Hx0, Hy0 show the rotations, from Ex, Ey and Hx, Hy by yep and yhp respectively, to give an
ideal 2D anti-diagonal response. The angle (yep – yhp) is termed the ‘twist’ of the electric-field axes relative
to the magnetic-field axes.
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Invariants of rotation

Many of the quantities arising so far are invariant with the
rotation of the observing axes. In Figure 4 it is shown how, by
inspection, an MT tensor can be expressed in terms of seven
such invariants. This figure shows two figures of the form of
Figure 2a juxtaposed, the left-hand one for the in-phase MT
data, and the right-hand one for the quadrature MT data.
Clearly lp, mp and ZLp are independent of lq, mq and ZLq, to the
extent that the in-phase and quadrature parts of an MT tensor
are determined independently. Also all of lp, mp, Z

L
p, lq, mq and

ZLq are independent of y
0, and so are invariants of axes rotation.

The seventh invariant shown, db, can be seen to also be
independent of y0 because as y0 changes the radial arms of
both circles rotate together. The angle between the two radial
arms (db) is constant and thus is also an invariant of rotation. In
this paper, db is defined as

db ¼ bq � bp ð54Þ
There are a number of different practical invariants in MT

(Berdichevsky and Dimitriev, 1976; Ingham, 1988; Szarka and
Menvielle, 1997;Weaver et al., 2000). The use of such invariants
for dimensionality analysis has been developed especially by
Marti et al. (2005, 2009, 2010) and Marti (2014); see also Jones
(2012). This paper will focus on the seven invariants shown
in Figure 4 and others closely related to them, and discuss the
useful information they convey. Thus the eight elements of an
MT tensor, all of which generally change upon axes rotation, are
expressed as seven invariants of rotation plus just one quantity
which does vary as the axes are rotated. As an example of the
latter, the angle b in Figure 2a defines the ‘observed point’, and
the tensor element values at this point in turn respond to the
directions of the measuring axes.

The set of invariants given in Figure 4 will now be reviewed.

Two invariants summarising the 1D character
of the tensor

The two invariants ZLp and ZLq summarising the 1D character
are straightforward and were termed ‘central impedances’ by
Lilley (1993). For graphical representation it may be convenient
to multiply them by T1/2, in view of the common tendency of
tensor elements to show a period dependency of T –1/2 (seeUnits
of E, Z and H).

Alternatively they may be combined as per Equations 10
and 11 and presented as values of apparent resistivity (ra ZL)
and phase (fZL), computed as

ra ZL ¼ 1
om

ZL
p
2 þ ZL

q
2

� �
ð55Þ

and

fZL ¼ arctan
ZL
q

ZL
p

 !
ð56Þ

An example of this presentation will be given below in
Figure 9.

Two invariants summarising the 2D character
of the tensor

Two invariants lp and lq measure the 2D character of the
MT tensor, and are also straightforward. They are naturally
angles, and were termed anisotropy angles by Lilley (1993).
With reference also to Figure 2a they may be expressed

lp ¼ arcsinðCp=Z
L
p Þ ð57Þ

and

lq ¼ arcsinðCq=Z
L
q Þ ð58Þ

where lp and lq are both in the range 0 to 90�. Note this
definition fails if either Cp > ZLp or Cq> ZLq (or both), and the
relevant circle encloses its origin of axes.

The special cases lp= 0 and lq= 0 arise when the data show
nil 2D characteristics. The data are then either pure 1D; or
‘twisted 1D’ (Lilley, 1993), and so 3D.

The special cases lp= 90� and lq = 90� arisewhen the in-phase
and quadrature parts respectively of the tensor are so anisotropic
as to be singular. Thus a value of lp and lq near 90� indicates
that a condition of singularity is being approached.

Two (of three) invariants summarising the 3D character
of the tensor

The two angles mp and mq shown in Figure 4 characterise the 3D
nature of the impedance tensor and are also straightforward.
It may be useful to express them as their mean and difference
values (this practice is adopted in the example below) because
certain mechanisms for causing 3D effects, notably those with a
strong twist component, give similar m contributions to both the
in-phase and quadrature parts of a tensor (Lilley, 1993). In cases
of the distortion of a regional 2D structure by a ‘twist’ factor only,
the twist is then measured by (mp+ mq)/2 and the difference
(mq – mp) should be zero.

Z ′xxp

Z ′xyp

Z ′xxq

Z ′xyq

Zp
L

Zq
L

0 0

marks the observed points 

mp

db

lp
mq

lq

In-phase Quadrature

Fig. 4. Seven invariants of rotation for a general 3D MT tensor. Two invariants ZLp and ZLq (in the units
of the tensor elements) measure 1D characteristics. Two angles lp and lq measure 2D characteristics.
Three angles mp, mq and db measure 3D characteristics.
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The third 3D invariant: the ‘7th invariant’

The third 3D invariant shown in Figure 4, db, can be seen to be
the angle by which the two radial arms of the in-phase and
quadrature circles are not parallel. It is significant as of the
invariants shown in Figure 4, it alone links the in-phase and
quadrature parts of an observed tensor. Care must be taken with
its sign (see Equation 54). This ‘7th invariant’ and other
invariants closely related to it will be discussed further below.

The invariants of Bahr (1988) and Weaver et al. (2000)

This paper will shortly introduce a 7th invariant which is
developed from the db of Figure 4, and is used below in place
of the 7th invariant of Weaver et al. (2000). As context, it is
necessary to first summarise both the analysis of Bahr (1988),
and also the ‘WAL2000’ analysis of Weaver et al. (2000). The
reason is that the 7th invariant of WAL2000 is closely linked
to the Bahr analysis.

The Bahr (1988) analysis

In this important and pioneering model of tensor distortion,
Bahr first notes that if a regional 2D tensor with an unknown
(but defined) strike is distorted by a (purely in-phase) tensor d
according to

Z ¼ d1 d2
d3 d4

� �
Z2D ð59Þ

where Z2D has the form [0, Zn; –Zc, 0], then

Z ¼ �d2Zc d1Zn

�d4Zc d3Zn

� �
ð60Þ

when the measuring axes are aligned with the regional strike.
When, as in the general case, the measuring axes are not

aligned with the regional strike, there will be an angle a
for measuring-axes rotation at which a magnetic signal in
the H0x direction will give an electric field signal
ðZ 0xxH 0x x̂0 þZ 0yxH 0x ŷ0Þ which is linearly polarised. At that
rotation, the measuring axes will be aligned with the regional
strike.

That is, the phases of Z0xxH0x and Z0yxH0x must be the
same, and so the phases of Z0xx and Z0yxmust be the same. Thus

Z 0xxq
Z 0xxp

¼ Z 0yxq
Z 0yxp

ð61Þ

and Equation 61 can be used to find a solution for a. In fact
two solutions for a will be found, and in the (ideal) case of
Equation 59 they will differ by 90�.

However values of rotation angle a which give the ‘equal
phase’ condition of Equation 61 can be sought for any observed
MT tensor. Call two such solutions a1 and a2, and in this paper
both are defined in the range 0� a< 180�, with a2> a1.

For the ideal case of Equation 59 the two a values differ by
90�. Thus the closer the difference between the two a values
now found is to 90�, the closer the actual MT situation is to the
ideal model. At best, two such values found for a will give the
direction of a 2D regional geologic strike (with a 90� ambiguity).

Bahr (1988, 1991) further defines a ‘phase-sensitive’ skew
value Z as an ‘ad hoc’ measure of the departure from his model
of data being fitted to it. Such values for Z are included in
the example of MT data given below. For the mathematical
derivation of Z the interested reader is referred to the papers
cited, and see also Simpson and Bahr (2005). For an Z value
of zero the regional structure is indeed 2D, the data conform to

Equation 59, and again the strike is given, with a 90� ambiguity,
by either a1 or a2 (which now differ by 90� exactly).

In the general case where the equal-phase condition of
Equation 61 is met for axes rotation a1, an angular deviation
x1 of the telluric field in the y0 direction occurs such that

tan x1 ¼ � Z 0xxp
Z 0yxp

ð62Þ

and also

tan x1 ¼ � Z 0xxq
Z 0yxq

ð63Þ

Similarly for axes rotation a2, with correspondingly different
values of [Z0xx, Z0xy; Z0yx, Z0yy], an angular deviation x2 occurs
such that

tan x2 ¼ � Z 0xxp
Z 0yxp

ð64Þ

and also

tan x2 ¼ � Z 0xxq
Z 0yxq

ð65Þ

The Bahr analysis can be displayed on a Mohr diagram, as
shown in Figure 5 for the example data NQ101R at period
T= 0.0353 s. At this period, two solutions for a have indeed
been found (a1 = 46.1� and a2 = 139.9�). The upper part of
Figure 5 is reproduced in Appendix A in more detail. It can be
seen that (p – a2 + a1) is indeed close to 90�, and thus a2 is indeed
close to (a1 + 90�).

For many MT data, however, solutions for a1 and a2 will not
be found, consistent with a condition given by Bahr (1988) not
being met. For the example data presented below, as the graphs
there will show, only for parts of the data spectrum is the
condition satisfied and angles a1 and a2 found.

The set I1, I2, I3, I4, I5, I6 and I7 of Weaver et al. (2000)

The first six of the set of invariants of Weaver et al. (2000)
follow the set of invariants of Lilley (1998) and comprise the
ZLp, Z

L
q, lp, lq, mp and mq of Figure 4, with the changes that sines

of angles are taken rather than the angles themselves. Thus ZLp is
taken as I1 and Z

L
q is taken as I2, but sin lp (rather than lp) is taken

as I3, and sin lq (rather than lq) is taken as I4.
Further, rather than taking mp and mq individually, their

sum (mp+ mq) and difference (mq – mp) are taken. Then, again
taking sines rather than basic angle values, WAL2000 define
sin(mp+ mq) as I5 and sin(mq – mp) as I6.

Taking the sines of angles is intended to produce values with
magnitudes on the convenient scale of 0 to 1, but this procedure
does not allow for angles greater than 90� without introducing
ambiguity in interpretation, because sin(p – m) = sinm. While the
values of lp and lq will never exceed 90�, in cases of strong
distortion the values of mp and mq may exceed 45� so that the
value of (mp+ mq) may indeed exceed 90�. Cases of such strong
distortion are not uncommon, and thus the use of actual angle
values (rather than taking their sines) is followed generally in
the present paper.

The seventh invariant of WAL2000, denoted I7, is not the
obvious db from Figure 5, but rather is based on the ideal
galvanic distortion model of Bahr. In terms of the Bahr model
described above, the WAL2000 I7 has the value

I7 ¼ sinða2 � a1 � p=2Þ ð66Þ
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and may be demonstrated graphically by a construction added
to Figure 5, as discussed in Appendix A below.

Weaver et al. (2000) also show that their I7 is related to db
(using the notation of Figure 4 of the present paper) by

I7 ¼
sin ðmq � mpÞ � sin lp sin lq sin db

Q
ð67Þ

where the dimensionless quantity Q (also an invariant) is
defined as

Q2 ¼ sin2 lp þ sin2 lq � 2 sin lp sin lq cos ðmq � mp � dbÞ
ð68Þ

Values of I7 may thus be calculated using Equation 67 even
when solutions for a1 and a2 do not exist and Equation 66 cannot
be applied. Such values of I7 calculated using Equation 67 are
included in the section below, but note they are susceptible to
instability when Q, the denominator of Equation 67, becomes
small. Also, once solutions for a1 and a2 can no longer be
found, the appeal of I7 as being simply related to a1 and a2 is
lost and the physical significance of I7 becomes obscure. This
situation gives rise to further enquiry regarding possible ‘7th’
invariants.

Appendix B presents some further notes on the resolution of
the slightly different definitions for the Bahr strike angles of the
Bahr (1988) and Weaver et al. (2000) papers.

Invariant Db, an extension of db
As illustrated by Figures 3 and 4, Equations 50 and 54 give

db ¼ ��eq � �hq þ �ep þ �hp ð69Þ
which in view of Equation 49 may be expressed

db ¼ mq � mp � 2ð�eq � �epÞ ð70Þ
Thus, for the simplest cases where yeq= yep, the angle db

in Figure 4 will take the value of (mq – mp), and the value of
(mq – mp – db) will be zero.

A further invariant is thus suggested, here called Db and
defined as

Db ¼ mq � mp � db ð71Þ
which tests whether (mq – mp – db) is indeed zero. When not
zero, Db gives a measure of the departure of the observed tensor
from the situation in which all 3D characteristics are accounted
for by the quantities (mq – mp) and (mp+ mq)/2, and so more
basically by mp and mq.

Z ′xyp

Z ′xxp

0

Z ′yxp

Z ′yyp

0

x2

x1

x2

x1

Z ′xyq

Z ′xxq

0

Z ′yxq

Z ′yyq

0

marks observed point

In-phase part: 

Out-of-phase part:

a2 

a2 

a1 

a1 

Fig. 5. TheBahr analysis demonstrated using data from site NQ101R, T= 0.0353 s. Upper diagram is for the
in-phase data, lower diagram is for the out-of-phase data. The angles a1 (46.1�) and a2 (139.9�) are the two
angles for the rotation of the horizontal axes at which the Bahr decomposition applies. The angles x1 (–12.4�)
and x2 (16.9�) are then the Bahr distortion angles, common for both the in-phase and quadrature data.
See Appendix A for more details regarding angles a1 and a2.
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Note further that Db is the angle which occurs in the cosine
factor in Equation 68. Also, that by Equations 70 and 71, Db can
be expressed in the simple form:

Db ¼ 2ð�eq � �epÞ ð72Þ
It is a condition of 2D cases that yeq= yep, (see Figures 2

and 3). Thus Db= 0 is the case automatically in all 2D cases,
whether or not the anisotropy is strong.

But note that Dbwill also become small and approach zero in
3D cases where there is a strongly dominant direction of electric
field signal, for which yeq� yep. This situation may occur in 3D
cases where, for example, the MT tensor approaches singularity
in both its in-phase and quadrature parts, due to strong distortion
by a pure-real tensor.

For completeness it should be added that, for 1D cases, yep
and yeq do not exist (see Figures 2 and 3), and Db is not defined.

Db and Q

Equation 68 for Q may be displayed as the geometric relationship
shown in Figure 6. In Figure 6b, the angle Db is now seen to
have a major influence in controlling the magnitude of Q. It is
evident that Q has the range 0�Q� 2, and that to minimise Q
the value of (mq – mp – db) must be zero. Study of Figure 6
makes clear the further condition required for Q= 0, that lp= lq.

The condition Q= 0 thus requires that both the in-phase
and the quadrature parts of an MT tensor have the same 2D
measure, i.e. that lp= lq, and also the same 3Dmeasures, i.e. that
mq – mp = 0. The condition Q= 0 further requires that bq – bp = 0.
The condition Q= 0 is thus met only by one particular and
highly restricted class of 3D (and 2D) structures, though note
that there is a special case possible for Q= 0 in which (mq – mp) –
(bq – bp)= 0 but mq – mp „ 0 and bq – bp „ 0, with lp = lq.

The quantity Q is thus comprehensive in being a function of
both the 2D and the 3D measures of an MT tensor. However it
is just this very property, of showing a combined 2D and 3D
response, that causes Q to be a less appropriate ‘7th’ invariant
than Db. Non-zero values of Db are a function of 3D
characteristics only.

Some further invariants

This section describes a number of further invariants, which will
be compared for the characteristics they show in the analysis of
field data.

Invariants (lp+ lq)/2 and (lq – lp)
As noted in the section Two invariants summarising the 2D
character of the tensor, the quantities lp and lq are both
gauges of two-dimensionality. In the next section below they
are presented as mean and difference values, following the
practice developed for m values.

Invariants det Zp and det Zq

The determinants of the in-phase and quadrature parts of the
MT tensor taken separately, given by

detZp ¼ Zxxp Zyyp � Zxyp Zyxp ð73Þ
and

detZq ¼ Zxxq Zyyq � Zxyq Zyxq ð74Þ
are invariants, and reduce to zero if Zp and Zq respectively
approach conditions of singularity (Lilley, 2016: 96). They are
included in the example results below multiplied by period T
(and so as det Zp T and det Zq T) to counter the common T –1/2

period dependency of tensor element values, explained in the
section Units of E, Z and H.

Invariants kp and kq
The quantities kp and kq are condition numbers, as defined for
magnetotelluric data by Lilley (2012). In Figure 3, kp is given by

kp ¼ �p=Yp ð75Þ
and will become large as the in-phase part of the tensor
approaches the condition of singularity (and its Mohr circle
approaches the origin of axes). kq is defined, and behaves,
similarly.

Dimensionless and invariant with axes rotation, kp and kq
are thus direct gauges of the in-phase and quadrature parts
respectively of a tensor approaching singularity. Because they
are ratios they do not depend on the absolute values of the
tensor elements, as do the invariants det Zp and det Zq.

Examples using MT data: the site ‘NQ101R’

The invariants described above are now presented graphically
for data from a particular Australian MT site, NQ101R, which
is offered as typical of many sites. Analysis begins with the
NQ101R data as tensor-element values in the practical units of
mV/km/nanotesla. In the graphs in the present section, the unit
of apparent resistivity is Wm, and the unit for angles (including
phase) is degree. The NQ101R data set has been chosen as,
over the period range of observation, its characteristics change
greatly, though not in an atypical way. Results for just one
observing site are thus sufficient to show a wide range of
significant 2D and 3D characteristics.

Thus Figure 7 shows the basic MT data, supplied as in-phase
and quadrature values at different periods of the elements of
[Zxx, Zxy; Zyx, Zyy], and here presented as plots of apparent
resistivity (in panels A1-A4) and phase (in panels B1-B4),
taking each element separately (see Equations 10 and 11).
It can be seen that the situation occurs where, with increasing
period, ra Zyy grows to be greater than ra Zyx; and where as ra Zxx
gets very weak, its phase goes ‘out of quadrant’, i.e. out of the
expected range between 0� and 90�.

Panels A5 and B5 show the det Zp T and det Zq T determinant
values reducing to near zero with increasing period, as both the
in-phase and quadrature parts of the tensor approach singularity.
In panels A6 and B6 the condition numbers, kp and kq, give

Q

sin lq

sin lq

sin lp

sin lp

Q

(a)

(b)

mq – mp – db

Δb

Fig. 6. (a) Equation 68 for Q expressed geometrically in terms of the
quantities shown in Figure 4. The side of length Q is opposite the angle
(mq – mp – db) which may thus be termed the ‘Q angle’. (b) Equation 68 for
Q expressed geometrically now with the ‘Q angle’ recognised as Db.
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different measures of the same phenomenon, now with values
increasing above 10 as the in-phase and quadrature parts of the
tensor approach singularity.

The panels C1 and D1 show Mohr diagram presentations of
the observed data, and exhibit much of the information spelled
out in the other panels.

The panels C3, D3, C4 and D4 show the singular value
decomposition of the tensor as outlined in the section
Application of a matrix method similar to SVD above, where
the major principal values (in-phase and quadrature) have been
combined to give ra ZPyx (apparent resistivity) and fZPyx (phase)
results, ashave theminorprincipal values togivera ZPxy andfZPxy

results. The rotation angles for the electric field axes, yep and yeq,
are given in panels C5 and D5, and the rotation angles for the
magnetic field axes, yhp and yhq, are given in panels C6 and D6.
Over the whole period range the ye values (panels C5 andD5) are
in good agreement, and change little. The yh values (panels C6
and D6) also are in good agreement, but are period dependent,
changing through almost 90� over the period range.

On the grounds that distortion is in the electric field rather
than in the magnetic field, one might look to both yhp and yhq
as indicative of 2D strike. However the data are too 3D for a 2D
model to be justified, a conclusion demonstrated particularly
by the period dependence of the yhp and yhq results.

Figure 8 shows further invariants of the NQ101R data. Panel
E1 shows the invariant I1 of WAL2000 as determined, and
panel F1 shows I1 multiplied by T1/2 to counter the T –1/2

period dependency referred to above. Similarly panels G1 and
H1 display I2 which, with I1, indicates the ‘1D magnitude’ of
the data.

Panels E2 and F2 then show the two anisotropy angles lp
and lq, which measure two-dimensionality. In panels G2 and H2
the means and differences of these two angles are plotted,
showing that they are similar at the start and finish of the
period range, but for mid-periods they differ substantially. At
the start of the period range both l values are at their minimum,
and at their closest to one-dimensionality. At long periods,
especially the lp values approach their limit of 90�.

In panels E3 and F3 the basic measures of three-
dimensionality (relative ‘twist’) are displayed, and in G3 and
H3 the means and differences of these quantities are given.
Again note that from a 2D (or 1D) start, with both m values
effectively zero, the three-dimensionality increases with period,
to ‘plateau’ at long periods (see panel G3). As in panel H2, in
panel H3 the differences between in-phase and quadrature
values are greatest at mid-periods.

Panel E4 presents db and panel F4 presents I7, the WAL2000
seventh invariant calculated using Equation 67. In exceeding
the value of unity I7 transgresses the intention of the WAL
invariants to have a magnitude in the range 0 – 1, and also it
can clearly not be interpretated as the sine of an angle. Panel
G4 displays the values of Q, and panel H4 the values of Db, to
which attention is drawn below as being of particular interest.

Panels E5 and F5 display the Bahr a values where they exist.
Panel G5 displays them combined to give a ‘mean strike
direction’, and panel H5 presents the difference between the
two strike direction estimates. Panel E6 gives the Bahr Z values,
and panel F6 the sine of the difference of the two strike
directions (i.e. the sine of the values in panel H5). The values
in panel F6 may thus be compared to the I7 values plotted in
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Fig. 7. Display and analysis by an SVD method of the MT data for the example site NQ101R. The data are closest to 1D at the short period (blue) end
of the spectrum, where the ‘near surface’ apparent resistivity is of the order of 103 Wm. See text for a description and discussion of the results shown.
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panel F4 above, and noted to agree where values for a1 and a2
exist. Panels G6 and H6 then give the Bahr x values, where they
exist.

Finally in Figure 8 panels E7 and F7 present, as mean and
difference values, the yep and yeq values from panels C5 and D5
of Figure 7. Consistent with Equation 72, in F7 the values taken
by (yeq – yep) can be seen to be half those of Db as in panel H4
above. Panels G7 and H7 similarly present as mean and
difference values the yhp and yhq values from panels C6 and
D6 of Figure 7.

Remembering from Figure 6 the control of Q by the lp
and lq values and by Db in particular, it can be seen in panel
G4 that Q is indeed close to zero when (in panel H2) lq � lp,
and (in panel H4) Db � 0.

Discussion

Observed MT data may thus be summarised as shown for
NQ101R in Figure 9. The left-hand two columns present the
tensor element data in their basic form, and the right-hand two
columns present the data as values of seven invariants, I01 to I07:

(i) in panel K1 the central-impedance apparent resistivity
ra ZL, here called I01;

(ii) in panel L1 the central-impedance phase fZL, here called I02;

(iii) in panel K2 the mean 2D anisotropy (lp + lq)/2, here called
I03;

(iv) in panel L2 the 2D anisotropy difference (lq – lp), here called
I04;

(v) in panel K3 the mean 3D ‘twist’ (mp+mq)/2, here called I05;
(vi) in panel L3 the 3D ‘twist’ difference (mq – mp), here called

I06; and
(vii) in panel K4 the 3D-sensitive Q-angle Db, here called I07 .

Panel L4 then completes the set with rotation-dependent
quantity yhp, which under certain circumstances gives an
indication of geologic strike. A rotation of the horizontal
measuring axes at the observing site would cause all values of
yhp to experience a zero shift. Also, from the infinite number
of tensors which share the same seven invariants I01 to I07
(one tensor at every point around the circles in Figure 4), the
rotation-dependent value yhp selects the original tensor. Picking
up the point of Weidelt and Chave (2012: 129), the eight values
(I01 to I07 and yhp) together allow the recovery of the original
tensor in a straightforward way.

To now review Figure 9, at the short-period end of the
spectrum the data are 2D, with I05, I

0
6 and I07 all near zero. In

fact, to the extent that I03 and I
0
4 are also both small, the data are

approximately 1D, indicating near-surface apparent resistivity
and phase values as given by I01 and I02 respectively.
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Fig. 8. Analysis of the MT data for site NQ101R, showing the values of the invariants described and discussed in the text as functions of period.
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As period lengthens, the data become both more 2D (as I03
increases), and more 3D (as I05 increases), with I

0
4 and I

0
6 giving

information on the consistency (or otherwise) of these
characteristics between the tensor in-phase and quadrature parts.

At the long-period end of the spectrum the data are now
strongly 3D, even extremely so, indicated by the values of I03
approaching 90� with significant values of I05. The in-phase
and quadrature parts of the tensor are in fact both approaching
singularity, which is also shown by the long-period (red) circles
in panels C1 and D1 of Figure 7 approaching their respective
origins of axes.

A particular interest lies in the I07 values in panel K4, which
for the long-period end of the spectrum remain small while
the 2D and 3D indicators I03 and I05 steadily increase in value.
The reason for this behaviour is that the increasing
three-dimensionality in the data is of a particular type, in
which there is a dominant electric field direction common to
both parts of the MT tensor.

Conclusions

This paper has focussed on expressing an observed
magnetotelluric tensor as a set of seven rotational invariants,
together with a single quantity which is rotation dependent.
Attention has been given to expressing the invariants
diagrammatically, as an aid to understanding their behaviour
and significance.

Results for an example observing site (NQ101R) demonstrate
that it is straightforward to compute such invariants as a function
of period. Particular characteristics of the dimensionality of the
data are commonly then shown to be period-dependent.

Attention has focussed in this paper on a newly-recognised
invariant Db which in the example shown is found, perhaps
unexpectedly, to be near zero even when other indications
of three-dimensionality are high. In the context of the
complications possible in 3D geological structures, low Db

values indicate a simplifying feature which may prove to be
an aid in the interpretation and modelling of MT data.
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Appendix A

Details of the Bahr analysis shown by a Mohr diagram

The axes rotation angles a1 and a2 introduced in the section The Bahr (1988) analysis and Figure 5 are shown in more detail in
Figure A-1.

In an ideal Bahr case, (a1 + p – a2) will have the value 90�. It can be seen in Figure A-1, diametrically opposite the point marked
with a star, that this condition is close to being satisfied in the present case. In such circumstances, where a1 and a2 both exist, the
WAL2000 invariant I7 may be obtained from the departure of (a1 + p – a2) from 90�. Call this departure angle �. Then

� ¼ 90� � ða1 þ 180� � a2Þ ðA-1Þ
¼ a2 � a1 � 90� ðA-2Þ

and the sine of the amplitude of � is taken as I7.

0

0

point

2a1 

p–a2 

2a2 

marks observed point

Z ′xxp

Z ′yxp

Z ′yyp

Z ′xyp

a1 a1 

a2 point 

Fig. A-1. This figure repeats part of Figure 5, with some details omitted so that other details, now added,
are clearer to see. At the point on the circle diametrically opposite the star, the Bahr rotation angles a1 and a2
are shown as a1 and (p – a2). It can be seen that (a1 + p – a2) is close to 90�; thus a2 is close to (a1 + 90�),
and (a2 – a1) is close to 90�. The I7 of Equation 66 is the sine of the difference between (a2 – a1) and 90� and
is thus, in this instance, the sine of a small angle (3.8�).
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Appendix B

Clarification of computations of the I7 of WAL2000

Using their notation, equations 48 and 49 of Weaver et al. (2000) are

Q sinð2�1 � 2�0Þ � d41 þ d23 ¼ 0 ðB-1Þ
and

Q sinð2�0 � 2�2Þ � d41 þ d23 ¼ 0 ðB-2Þ
where y1 and y2 are strike directions, y0 is a ‘mean strike direction’, and d41 and d23 are calculated from values of an observed
MT tensor. Using the relationship

I7 ¼ ðd41 � d23Þ=Q ðB-3Þ
Equations B-1 and B-2 become, respectively,

sinð2�1 � 2�0Þ ¼ I7 ðB-4Þ
and

sinð2�0 � 2�2Þ ¼ I7 ðB-5Þ
In turn these equations give

�1 ¼ 1
2
arcsinðI7Þ þ �0 ðB-6Þ

and

�2 ¼ �0 � 1
2
arcsinðI7Þ ðB-7Þ

Subtracting Equation B-7 from Equation B-6 gives

�1 � �2 ¼ arcsinðI7Þ ðB-8Þ
and so

sinð�1 � �2Þ ¼ I7 ðB-9Þ
as in Weaver et al. (2000) with the implication that when I7 = 0, the equalities y1 = y2 = y

0 accompany galvanic distortion in a 2D
region.

However note that for I7 = 0 Equation B-4 has the solution

2�1 � 2�0 ¼ 0;�p ðB-10Þ
and Equation B-5 has the solution

2�0 � 2�2 ¼ 0;�p ðB-11Þ
leading upon the addition of Equations B-10 and B-11 to

�1 � �2 ¼ 0;�p=2;�p ðB-12Þ
Then, rather than take y1 = y2 as in Weaver et al. (2000) it is clearer, as shown in Figure 5, to think of y2 = y1 + p/2 for galvanic

distortion in a 2D region. That is, y2 should not be thought of as departing from y1 (and so equal to y1 in an ideal situation), but as
departing from y1 + p/2 (and so equal to y1 +p/2 in an ideal situation). By way of illustration, in Figure A-1 the angles a1 and a2 are
not approximately the same, but are different by close to 90�.
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