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Abstract. We propose an empirical Bayesian approach to inferring shallow (depth ranges from a few to several tens of
metres) S-wave velocity structures using microtremor arrays and execute numerical tests to assess the feasibility of this
approach. In our approach, the estimate of the S-wave structure (posterior) is derived from an empirical S-wave structure
model (prior) andphasevelocities ofRayleighwaves obtainedwithmicrotremor arrays. In otherwords,we aim tofindamodel
that is close to the empirical model and is able to explain phase velocities with a 1D surface-wave theory. The inversion is
stabilised by the constraints from the prior model so that model parameterisation with many thin layers can be adopted. The
velocity structure is individually estimated for each of two cases (assumptions): the casewherewe assume fundamental-mode
dominance and the casewherewe take into account thehighermodes.Optimal values of themodel parameters (e.g. a thickness
parameter) are found, based on Akaike’s Bayesian Information Criterion (ABIC), and the choice of the better assumption
of the surface-wave theory is also based on ABIC. Numerical tests, where synthetic data is generated from a horizontally
stratified two-layer model, indicate that the relative weight between a prior model and the observed data is appropriately
adjusted by ABIC. It is revealed that a value of the thickness parameter required to reproduce the given two-layer model is
successfully found by ABIC. We also suggest that we can make a plausible choice of the assumption of the surface-wave
theory with ABIC, unless observation error is extremely large.

Key words: arrays, inversion, modelling, passive, shallow, surface wave, velocity.

Received 17 January 2018, accepted 19 January 2018, published online 19 March 2018

Introduction

Microtremor array surveys are a non-destructive method for the
exploration of S-wave velocity structures that does not require
artificial sources (Okada, 2003). Therefore, as microtremor array
surveys for shallow velocity structures need only small-size
arrays, they can be conducted very flexibly. They can be a tool
to acquire data before attempting other exploration methods (e.g.
Cho et al., 2013; Cho and Senna, 2016). However, despite its
flexibility in thefield, thedata processingprocedure (i.e. inversion
to find a velocity structure) can be further improved.

The Society of Exploration Geophysicists of Japan
Standardisation Committee (2008) generally recommends using
three to several layers for an inversion model so as to keep the
number of unknowns as small as possible in microtremor array
analyses (e.g. Chimoto et al., 2016). In some studies, VS (S-wave
velocity) is fixed and only the layer thickness is estimated (e.g.
Goto et al., 2017). When we use a model with few layers or
a model with a fixed velocity in each layer, however, it is
difficult to identify singular features involving a low-velocity
layer sandwiched between high-velocity layers or a high-velocity
layer between low-velocity layers (structural singularity), which
are often seen in shallow velocity structures.

Onepossible approach to inferring sucha structural singularity
is to make the thickness of each layer sufficiently thin and fixed
at a certain value and to estimate the S-wave velocity for each
layer. However, as the number of layers increases, the estimates
generally become unstable (Cho et al., 1999). Although it may be

possible to impose a smoothing constraint for stabilisation, the
arbitrariness of the strength of such a constraint then becomes
a problem (Fukahata, 2009). It is desirable to develop a flexible
and objective method to capture the wide variability of shallow
(several metres to several tens of metres in depth) velocity
structures.

Another problem when inverting a velocity structure is an
arbitrary choice of the assumption of a surface-wave theory
for the forward calculation. We frequently assume that the
fundamental-mode Rayleigh waves dominate the vertical motions
of microtremors. This assumption seems quite common, in
particular, for the spatial autocorrelation (SPAC) method (Aki,
1957), which has been widely adopted in recent years (e.g.
Chimoto et al., 2016; Goto et al., 2017). However, higher
modes are indeed easily excitable in shallow structures (e.g.
landfills including remarkable velocity inversion and high-
contrast structures such as an alluvial layer on basement rock).
In general, the phase velocities of the higher modes are faster
than those of the fundamental mode, so that the S-wave velocity
will likely be overestimated if we assume the dominance of
the fundamental mode mistakenly (i.e. when higher modes
coexist in the real wavefield). Conversely, the S-wave velocity
will likely be underestimated if we assume the coexistence of
the higher modes mistakenly (i.e. when only the fundamental
mode exists in reality). Thus, the arbitrary assumption of the
type of wavefield of the microtremors has always been a matter
of concern (e.g. Poggi et al., 2012).
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In light of this, inversion methods where we take into
consideration the higher modes have been proposed, although
there are few examples of such studies (e.g. Arai and Tokimatsu,
2005; Ikeda et al., 2012). In such cases, however, we may
suspect that higher modes are actually excited. This is because
the excitation of each mode depends not only on the velocity
structure but also on the oscillation source.

These problems can be dealt with using a Bayesian approach.
With a Bayesian approach, we incorporate a priori knowledge
and/or information as probability distributions of parameters
(prior distributions) and combine them with observed data
to estimate improved probability distributions of parameters
(posterior distributions). Because the subjectivity of the prior
distribution is a problem in a Bayesian approach, a method
called ‘empirical Bayes’, in which we determine the prior
distribution based on the data, is currently widely used to
avoid the subjectivity. This method maximises the statistical
measure called the ‘marginal likelihood’ and is known in
geophysics as Akaike’s Bayesian Information Criterion (ABIC)
(Akaike, 1980). Since Akaike (1980), inversion methods based
on empirical Bayes have been applied to many geophysical
problems (Ogata et al., 1991; Koketsu and Higashi, 1992;
Sekiguchi et al., 2000; Cho et al., 2006; Fukahata and Wright,
2008; Iwata, 2013, 2014) and this approach therefore appears to
be well established (Matsu’ura et al., 2007; Fukahata, 2009).

Since the selection of the number of unknowns is not an
essential problem in this approach (see subsection ‘Information
criterion’), it is possible to use a sufficiently large number of
layers to express a complex velocity structure that may include
some structural singularities. Therefore, we can apply multiple
models with various numbers of layers (from a few to many) to
inversions. Because the difference in the numbers of layers is
represented as the difference in a prior distribution in a Bayesian
framework, we can select the best number of layers with
ABIC. In a similar manner, the more likely assumption about
the microtremor wavefield can also be selected objectively
with ABIC.

In this way, the empirical Bayes approach offers various
advantages, but it has almost never been used in the field of
microtremor array analyses. Therefore, it is important to
summarise and report on the basic principles of such an idea.
Accordingly, we have compiled the basic theory and evaluated
its applicability by conducting numerical tests with a two-layer
model where we assumed that we were surveying a shallow
velocity structure with small-size seismic arrays. In the following
section, ‘Method’, we give details of the proposed method.
The ‘Numerical tests’ section reports numerical tests and
their results, which are discussed in the ‘Discussion’ and are
summarised in the ‘Conclusions’.

Method

Overview

The proposed method assumes that an S-wave velocity structure
is to be estimated from the phase velocities of Rayleigh waves,
which are obtained by applying the SPAC method (Aki, 1957)
or the centreless circular array (CCA) method (Cho et al., 2004;
Tada et al., 2007; Cho et al., 2013) to circular-array data of
vertical-component microtremors. A theoretical phase-velocity
dispersion curve is calculated with a surface-wave theory
assuming a horizontally layered velocity structure. More
specifically, Hisada’s algorithm (Hisada, 1994, 1995) is used
for the calculation. When the influence of the higher modes is
taken into account, the equivalent phase velocity is synthesised
through the method of Tokimatsu et al. (1992), where the

‘equivalent phase velocity’ is referred to as ‘apparent phase
velocity’ in their original paper.

Parameterisation of velocity structure

The layer thicknesses remain fixed during the inversion process.
Each layer is made sufficiently thin, but the layer thickness is
modelled such that the layer thickness gradually becomes greater
with depth, to keep the calculation time reasonable. Concretely,
the thickness thki (m) of the ith layer from the surface is given by:

thki ¼ bð1þ aÞi�1; ð1Þ
where a and b are layer thickness parameters (constants). Density
and P-wave velocities in each layer are derived from the S-wave
velocity using the empirical law of Ludwig et al. (1970).

Velocity structure modelling by the simple
profiling method

The simple profiling method (SPM) is a conventional and
empirical method used to convert a Rayleigh-wave phase-
velocity dispersion curve into an S-wave velocity structure
(Heukelom and Foster, 1960; Ballard, 1964; Gazetas, 1982;
Cuéllar, 1994; Society of Exploration Geophysicists of Japan
Standardisation Committee, 2008; Pelekis and Athanasopoulos,
2011). It provides a rough but practical estimate. An SPM
profile is expected to be a good prior model in the absence of
pre-existing survey data.

In this study, an SPM profile is created by the following
procedure. First, a relation between the frequency freq and the
(equivalent) Rayleigh-wave phase velocity Vr (i.e. the dispersion
curve) is converted into a dispersion curve with respect to
wavelength L, via the relation between the frequency and the
wavelength: freq =Vr/L. Next, using the empirical relationships
of dep=L/3 and Vr= 0.92VS, where dep is the depth, the
dispersion curve is converted into an S-wave velocity-depth
profile. Different values of the conversion factors have been
used in different studies, with the L-dep conversion factor
ranging between 1/3 and 1/2 and the VS-Vr conversion factor
ranging between 0.87 and 1.00 (see the literature referenced at the
beginning of this subsection). The conversion factor values used
here are based on Gazetas (1982) and the Society of Exploration
Geophysicists of Japan Standardisation Committee (2008). The
values ofVS in the SPMprofile thus obtained are then averaged in
each layer defined with Equation 1. Hereinafter, the velocity
model obtained in this way is called the SPM model.

Inversion

The SPM model above is used as a prior distribution in our
Bayesian approach. Let Nd and Nx be the numbers of observed
data and unknown parameters, respectively. First, the observed
phase velocityd (Nd-dimensional vector) and theS-wavevelocity
model x (Nx-dimensional vector) are associated mutually by the
following statistical model:

pðdjx; s2Þ ¼ ð2ps2Þ�
Nd
2 jEj�1

2 exp

�
� 1
2s2

ðd� fðxÞÞTE�1ðd� fðxÞÞ
�
; ð2Þ

where s2E is a covariancematrix and |�| represents a determinant.
The superscript T represents the transpose. The scalar quantity
s2 is a scaling factor of variances and covariances for data. The
function f(�) (Nd-dimensional vector) represents the theoretical
Rayleigh-wave phase velocities, which are to be compared with
the observed phase velocities.

A vector x0 represents a set of prior values of the unknown
velocity model x (see subsection ‘Velocity structure modelling
by the simple profilingmethod’).When theprior distribution forx
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is a multivariate normal distribution with means x0 and
a covariance matrix (s2/l2)D, its probability density function
is given by:

pðx;s2; l2Þ ¼ ð2ps2=l2Þ�Nx
2 jDj�1

2 exp

�
� l2

2s2
ðx0 � xÞTD�1ðx0 � xÞ

�
: ð3Þ

In this study, the covariance matrices s2E and (s2/l2)D
are diagonal matrices; the diagonal components of which are
denoted by s2di (i= 1,���,Nd) and s2ai (i= 1,���,Nx), and the non-
diagonal components of both matrices are zero. The relative
variances of the observed data and the prior distribution �s2di
and �s2ai are supposed to be known, and their scaling factors
s2 and l2 are supposed to be unknown. These parameters are
related to each other by the following equation:

s2di ¼ s2�s2di;

s2ai ¼ ðs2=l2Þ�s2ai:

(
ð4Þ

Amaximum a posteriori (MAP) estimate is a typical estimate
in a Bayesian approach. It is a set of parameter values that
maximise the posterior distribution. In our case, the posterior
distribution is expressed by the following equation:

pðxjd; s2; l2Þ / pðdjx; s2Þpðx; s2; l2Þ

¼ ð2ps2Þ�
NdþNx

2 jEj�1
2ðl2ÞNx2 jDj�1

2 exp

�
� 1
2s2

SðxÞ
�
;

ð5Þ

where

SðxÞ ¼ ðd� fðxÞÞTE�1ðd� fðxÞÞ þ l2ðx0 � xÞTD�1ðx0 � xÞ: ð6Þ
The value of x (= x̂), which minimises S(x) of Equation 6, is

a MAP estimate.
If a value of l2 is known, the MAP estimate is obtained with

the Levenberg-Marquardt method (e.g. Press et al., 2007), which
is a standard quasi-nonlinear (iterative) technique. However, the
value of l2 is unknown. Therefore, we first give several different
values to l2, and obtain different MAP estimates for each of
these. Then, we select from these different estimates the best
estimates and the optimal value of l2 with an information
criterion described below.

Information criterion

Akaike (1980) proposed ABIC, defined by the following
equation, to be used for comparison among multiple Bayes
models (Bayesian model comparison):

ABIC ¼ �2 logðmaximum marginal likelihoodÞ; ð7Þ
where the marginal likelihood is given by:

Lðs2; l2jdÞ ¼
ð¥
�¥

pðdjx; s2Þpðx; s2; l2Þdx: ð8Þ

A model with a smaller ABIC value is considered to be
a better one.

By substituting Equations 2 and 3 into Equation 8, applying a
Laplace approximation (Tierney and Kadane, 1986) and imposing
the condition qL/q(s2) = 0 for maximising L (s2, l2|d), we obtain:

s2 ¼ Sðx̂Þ=Nd ; ð9Þ
and

ABIC ¼ Nd log Sðx̂Þ � Nx log l̂
2 þ log jATE�1Aþ l̂2D�1j

þ log jDj þ const:; ð10Þ

where l̂2 is the value of l2 that minimises the right-hand side
of Equation 10, and the value of l̂2 is determined in practice by
a grid search. A is a Jacobian matrix (aij ¼ qfi=qxjjx¼x̂).

The marginal likelihood corresponds to the probability
(value of the probability distribution) that the data d is
obtained when parameter x is randomly extracted from the
prior distribution p (x; s2, l2) and when data d is generated
from the probability distribution p (d|x; s2). It is known that
the number of unknown parameters does not affect the
Bayesian model comparison based on the marginal likelihood
and overfitting due to an excessive number of parameters can
be avoided (e.g. MacKay, 1995). This is because, as shown in
Equation 8, the marginal likelihood evaluates the probability
of data d appearing with respect to the whole parameter
space, not the probability with respect to a specific value of
the parameter.

Equation 7 can be used for comparison among Bayes
models with different hyperparameter values that characterise
prior distributions and likelihood functions, as well as Bayes
models with different assumptions (e.g. Kass and Raftery, 1995).
In this study, Bayesian models for two cases (the case where
we assume fundamental-mode dominance and the case where
we take into account higher modes), with various values of layer
thickness parametersa andb, are comparedbasedonEquation10.
More specifically, since the number of combinations of layer
thickness parameters is six, as described in the next section, the
comparison is made for 12 (= 6� 2) models.

Numerical tests

Method

Two sets of theoretical phase velocities, which correspond to f(�)
appearing in the subsection ‘Inversion’ are calculated: one for
the case of the fundamentalmode alone andone for the casewhere
the higher modes are taken into account. A horizontally stratified
two-layer velocity structure model (Figure 1 and Table 1) is
used for both cases,where the upper layerwithVS of 150m/s has a
thickness of 20m, over a basement with VS of 300m/s. The
frequency range of the dispersion curve is from 2 to 18Hz
(sampled at a 0.36Hz interval; Nd= 46). To mimic observation
errors, fluctuations following a normal distribution N(0, s2) are
given to the theoretical phase velocities. The resulting phase-
velocity dispersion curve is called ‘synthetic data’ (phase
velocity) or ‘observed data’ in this study. We consider four
cases where the standard deviation s is set to 0%, 5%, 10%
and 20% of the theoretical values. Therefore, 8 (= 4� 2)
dispersion curves of synthetic phase velocities are created.
Hereinafter, the four synthetic datasets with the fundamental
mode alone are called ‘synthetic data F’, and the other four
synthetic datasets in which the higher modes are taken into
account comprise ‘synthetic data M’.

Using these synthetic datasets, velocity structures are
estimated. Estimation (inversion) is carried out with layer
thickness parameter a fixed at 0.2, and six values of 1, 2, 5,
10, 20 and 30 are given as b. We consider two cases for the
inversion: calculations of estimated values when assuming
fundamental-mode dominance and when taking into account
higher modes. These are called ‘analysis F’ and ‘analysis M’,
respectively.

For each inversion, it is necessary to set the hyperparameter
l2 to a fixed value. Accordingly, inversion is carried out for
the eight values of l2 = 10�4, 10�3, 10�2, 10�1, 100, 101, 102, 103,
and a search is made for l2 that minimises the right-hand side of
Equation 10. Therefore, 96 (= 6� 2� 8) inversions are carried
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out with different sets of parameter b and l2 for each of the
eight synthetic datasets.

In this study, the value of 1/3 is used for the L-dep conversion
factor in the creation of the SPMmodel, but as mentioned above,
different values of the conversion factor have been suggested in
earlier studies, which tend to extend the deeper end of a model.
Accordingly, at the deeper end of the inversion model, some
layers are added until the depth of the midpoint of the lowermost
layer reaches the maximum depth that is shallower than half
the maximum wavelength. As a result, the depth of the upper
surface of the lowermost layer ranges from 30 to 59m, depending
on the layer thickness parameter b. The number of layers NL

ranges from 2 to 15.
Additionally, in order to take into account the stabilisation

of the calculation, VS in the lowermost layer is fixed to the
maximum value from the SPM data, and VS of the other layers
is estimated. Therefore, the number of unknowns is NL – 1,
which is equal to Nx. The standard deviations of the observed
data and the prior distributions are assumed to be proportional to
their respective average values, and 10% is given for �sdi and �sai.
These assigned standard deviations are merely provisional, and
appropriate values of sdi and sai are estimated via the estimation
of the scaling factors s2 and l2 (see Equation 4).

Based on the inversion results, differences in the marginal
likelihoods given by different sets of the parameters b and l2 are
examined. The goodness-of-fit between the theoretical and the
observed phase velocities and the reproducibility of the assumed
velocity structure model are evaluated, respectively, by:

RMSpv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nd

XNd

i¼1

ðdi � fiðx̂ÞÞ2=�s2di

vuut ; ð11Þ

and

RMSvs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ndep

XNdep

i¼1

½VS
invðdepiÞ � VS

givenðdepiÞ�2
VS

givenðdepiÞ2

vuut : ð12Þ

VS
inv (depi) is the S-wave velocity of a velocity structure

model obtained through the inversion procedure (hereafter
referred to as an inverted model) at the ith depth depi, and
VS

given (depi) is the corresponding S-wave velocity for
generating the synthetic data (true velocity structure model,
hereafter referred to as the given model) (Figure 1 and
Table 1). Ndep is the number of S-wave velocity sampling
points (sampling depth) depi. We set dep1 and depNdep

to 5 and
30m, and Ndep to 251, respectively (i.e. the sampling is
performed at every 0.1m in the range from 5 to 30m of depth).

We also examine whether the assumption (fundamental
mode only or taking into account the higher modes) used in
the creation of the synthetic data can be selected correctly with
ABIC. If ABIC is smaller when analysis M (F) is applied to
synthetic data M (F) than when analysis F (M) is applied, then
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Fig. 1. Synthetic phase-velocity dispersion curves (upper panels, circle and cross) and the corresponding two-layer model (lower panels, solid line). From
the left, the panels correspond to cases of observation error s= 0%, 5%, 10% and 20%. SPM profiles are also plotted in the lower panels. The circles and
crosses representing each dispersion curve and SPM profile indicate synthetic data F and synthetic data M, respectively.

Table 1. Velocity structure.

Density (g/cm3) VP (m/s) VS (m/s) Thickness (m)

1.71 1580 150 20
1.78 1690 300 ¥

884 Exploration Geophysics I. Cho and T. Iwata



ABIC is useful as a measure for judging whether analysis F or
analysis M is more likely for a particular observed dataset.

Analysis results

Selection of hyperparameter l2 and the number
of layers

Figures 2–4 show inversion results for synthetic data M and
s= 5% with analysis M. Figure 2 shows the case where b= 20
and l2 = 0.01. The SPM velocity profile, prior model, inverted
model and given model are plotted together in the left panel. The
same are shown in the central panel in a logarithmic scale. The
panel on the top right shows dispersion curves for the observed
phase velocity (synthetic data), the theoretical equivalent phase
velocity where we take into account the influence of the higher
modes, and the phase velocity of each mode. The panel on the
bottom right shows the medium response factors divided by the
squared wavenumber as the weighting factors of each mode. In
this case, it can be seen in Figure 3 that both the goodness-of-fit
and reproducibility are satisfactory with RMSpv= 0.44 and
RMSvs= 0.004, respectively. In addition, the deviation between
the inverted and the prior models is small, and thus, an SPM
gives an appropriate prior distribution.

Figure 3 shows six inverted models with different layer
thickness parameter b. In each of the six panels, the model
with the smallest ABIC among the cases with eight different
values of l2 is shown. The number of layers increases as b
becomes small, and consequently, the change in VS with depth
becomes smooth in general. This is because the SPM model
that is given as the prior distribution (red broken line) approaches
the rawSPMprofile (open circles) and therebybecomes smoother
with smaller b. Nonetheless, the velocity discontinuity at the
depth of 20m in the given model is reproduced to some
extent in every profile, except for b= 30, indicating that the
discontinuity at a depth of 20m is an important factor in
explaining the observed data.

The ABIC optimally strikes a balance between the fit of the
inverted model to the prior model and the fit of the theoretical
phase velocity to the observed data; the ABIC shows that the
balance for the case with b= 20 is the best among the six inverted
models (see ABIC values in each panel of Figure 3). As a matter
of fact, every result shows an excellent fit to the observed data
(i.e. RMSpv ranges from 0.44 to 0.52), except for the model of
b= 30. The given model is reproduced as well, and RMSvs takes
a value in the range from 0.004 to 0.19.

Figure 4 shows the change in RMSpv and (–2)� (log marginal
likelihood) when b and l2 are varied. Excluding the case of b= 30
where the first layer is too thick, every case shows a similar
tendency. That is, while RMSpv generally takes an almost
constant small value at l2 < 1, it rapidly increases at l2> 1.
Within the range of l2 where RMSpv is almost constant,
(–2)� (log marginal likelihood) finds a minimum value. This
suggests that, through ABIC for each value of b, the optimal
value of l2 is found for which the deviation from the prior
distribution is reduced while keeping the value of RMSpv small.

All five cases where the value of b ranges from 1 to 20 give
a small RMSpv of the same degree when l2< 1. Therefore, the
model in which the difference between x0 and x is the smallest
for 1� b� 20 is selected (see also Equation 6). As a result,
the case of b = 20 is selected.

In this case, RMSvs is 0.004, which is by far the smallest in
the five cases. This result, whereby a model that reproduces the
true velocity structure well is chosen by the selection of layer
thickness parameter b on the basis of ABIC, indicates that the
proposed approach works appropriately.

Selection of the assumption about the wavefield

The left panel of Figure 5 shows the difference in ABICs
when analysis F and analysis M are applied to synthetic data F,
where a value of ABIC in Equation 10 is evaluated in each
individual case of either analysis F or analysis M. Meanwhile,
the right panel shows the difference in ABICs when analysis
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right shows dispersion curves of Rayleigh-wave phase velocity. Circles represent observed phase velocity (synthetic data). A heavy solid line
represents the equivalent phase velocity, which includes the influence of each higher mode. A thin line corresponds to each mode. The panel on
the lower right shows themedium response factors divided by the squaredwavenumber (Tokimatsu et al., 1992) used for the synthesis of equivalent
phase velocity.
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M and analysis F are applied to synthetic data M. To observe the
significance of the results, the mean and standard deviation of
the differences of 100 trials with assigning random fluctuations
corresponding to observation errors are shown for each of
s = 5%, 10% and 20%.

The left panel of Figure 5 reveals that ABICs by analysis M
are larger than ABICs by analysis F for synthetic data F. That is,

when the synthetic data are created using the model in which
the fundamental mode is dominant (i.e. synthetic data F), the
inversion analyses where we assume the dominance of the
fundamental mode (i.e. analysis F) are accordingly evaluated
as better Bayes models. Further, except for the case of s= 20%,
the right panel shows the tendency for ABICs by analysis F to be
larger than ABICs by analysis M for synthetic data M. That is,
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the inversion analysis in which the wavefield assumption agrees
with that used in creating data is evaluated as a better case,
except for the case with the largest observation errors.

As shown above, from a viewpoint of statistical model
comparison, the choice of the assumption about the wavefield
is significant. It is true, of course, that the choice is unimportant
if an inverted model does not depend on the choice. However,

in our results, an inverted model (i.e. the reproducibility of the
velocity structure) showed the dependency. More specifically,
when the assumption about the wavefield was valid, RMSvs (the
reproducibility of the velocity structure) generally remained at
a few to 10%, but it did not fall below 10% when the wavefield
assumption was not valid (except for the case of s= 20% in
Figure 6). As the observation error got smaller, the difference
became larger.

In order to visualise those differences in RMSvs, the variation
of thevelocity structurewithdifferent assumptions is compared in
Figure 7. For example, for synthetic data F, analysis F (leftmost
in Figure 7) reproduces the true velocity structure better than the
analysis M (second from the left in Figure 7).

While such a difference appears in the reproducibility of
the velocity model, there is no significant difference in RMSpv,
the goodness-of-fit between the theoretical and observed
phase velocities (Figure 8). RMSpv is comparable whichever
assumption on the wavefield is used in the inversion
procedures for all cases except s= 0%. This may be because as
the observation errors in the dispersion curve become large,
they conceal the influence of the higher modes.

The results above show the importance of the choice of
assumption about the wavefield, not only for an interpretation
of the wavefield, but also from the viewpoint of the accurate
estimation of a velocity structure. They also show that the
assumption cannot be selected correctly based on the goodness-
of-fit between the theoretical and observed phase velocities
(RMSpv) alone. Thus, we can say that the assumption is selected
successfully with ABIC, and this indicates the effectiveness of
the Bayesian approach in this study.

Discussion

The layer thickness parameter

Subsection ‘Selection of hyperparameter l2 and the number
of layers’ showed that the model with b = 20, for which the
boundary depth at 20m is the same as the given model, is
selected as the best. This was regarded as evidence for the
justification of the proposed method. However, one may think
this is not a fair comparison, since the boundary depths in the
given model and the models used in the inversion do not match
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except for the model with b= 20. Therefore, here, in addition
to the case we have examined above, a numerical test is applied
to the case of a = 0. In this case, since the layer thickness of
themodel is uniform regardless of depth, themodelswith b= 1, 2,
5, 10 and 20 commonly have a layer boundary at a depth of
20m, similar to the given model.

The same numerical test for synthetic M and s= 5% with
analysis M as in the subsection ‘Selection of hyperparameter
l2 and the number of layers’ was carried out in order to examine
whether the model with b= 20 is still selected as the best. As
a result, it was confirmed that the model with b= 20 was
successfully selected.

It is worth noting that, from a statistical viewpoint, the
proposed method can select not only the value of b but also a.
If we think that the parameterisation for layer thickness does
not appropriately reflect the real velocity structure, even though
bothvariationsofaandbare examined,wecanmodifyEquation1
and can assess whether Equation 1 or the modified equation
is better.

Positioning of the proposed method and future tasks

In a conventional microtremor array survey, the number of
layers is decided based on the experience and intuition of an
expert so that the phase-velocity data can be explained by an
inverted model with as few layers as possible (e.g. the Society of
Exploration Geophysicists of Japan Standardisation Committee,
2008). It must also be decided whether the dispersion curve is
influenced by higher modes or not. An expert will probably
make appropriate decisions, but neither the criteria nor the
reproducibility of his or her decisions is necessarily clear. This
research has introduced amethod for carrying out these decisions
objectively, which is therefore applicable to automatic
processing. A system that can obtain large amounts of data by
small-size seismic arrays has been developed (Cho and Senna,
2016), and subsequently, for example,Wakai et al. (2017) carried
out observations with small-size arrays at ~10 000 sites on the
Kanto plain (as of February 2017).With such a background, there
is great significance in enabling the substitution of expert
decisions with automatic processing.

The proposed method can stably handle models with
a relatively large number of layers (see subsection ‘Information
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criterion’). In addition, an SPM often reproduces features of
a structural singularity. Therefore, the proposed method has
the potential to be used as a tool for exploring such a structural
singularity, which is often observed in shallow velocity
distributions. For example, in Figure 9, a velocity model with
a localised low-velocity anomaly or a localised high-velocity
anomaly at a depth of 5 to 10m is plotted together with the
corresponding SPM profile. It can be seen that the SPM profiles
roughly trace these structural singularities. As long as the SPM
profile reproduces the features of complex soil structures in this
way, our Bayesian approach is expected to reproduce those
features with a resolution comparable to that obtained with an
SPM. An examination of such potential is a future task.

Conclusions

This paper showed that an empirical Bayes approach with ABIC
is effective in estimating a shallow (several metres to several tens
of metres) S-wave velocity structure for a microtremor array
survey. To evaluate feasibility, numerical tests were carried out.
The proposedmethod adopts an S-wave velocity profile obtained
with a simple conversion of the dispersion curve of phase
velocity as a prior distribution. Then it evaluates, based on
ABIC, the validity of the optimum layer thickness parameter
(which also relates to the number of layers) and the assumption
on the mode dominance in the microtremor wavefield. In the
numerical tests, a horizontally stratified two-layer velocity
structure model was used to generate synthetic data. It was
demonstrated that the appropriate layer thickness parameter is
selected. The numerical tests also indicated that ABIC is an
appropriate measure to compare the validity of the two cases:
the case where we assume the fundamental-mode dominance
and the case where we take into account the higher modes.

Focusing on the presentation of the basic principle, we
introduced the basic theory of the proposed method and
reported on simple numerical tests as described above. The
feasibility used with observed field data is for future work.
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