Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Water uptake of humic and fulvic acid: measurements and modelling using single parameter Köhler theory

Courtney D. Hatch A B C , Kelly M. Gierlus A , James Zahardis A , Jennifer Schuttlefield A and Vicki H. Grassian A B D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.

B Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA 52242, USA.

C Present address: Hendrix College, 1600 Washington Ave., Conway, AR 72032, USA. Email: hatch@hendrix.edu

D Corresponding author. Email: Vicki-Grassian@uiowa.edu

Environmental Chemistry 6(5) 380-388 https://doi.org/10.1071/EN09083
Submitted: 3 July 2009  Accepted: 16 September 2009   Published: 22 October 2009

Environmental context. Humic and fulvic acids are macromolecular, multifunctional, polyacidic compounds that are important proxies for humic-like substances (HULIS), which are ubiquitous components of tropospheric particulate matter. The hygroscopic nature of these substances suggests that they can contribute to direct and indirect climate forcing. Thus, the effects of water uptake in humic-like particles in the atmosphere must be well understood.

Abstract. The water uptake of humic and fulvic acid aerosols was determined by hygroscopic tandem differential mobility analysis (hTDMA) and extinction Fourier transform infrared (FTIR) spectroscopy. Water uptake on humic and fulvic acid thin films was also investigated using attenuated total reflectance (ATR) FTIR spectroscopy. The hygroscopic growth of monodisperse, 100-nm (dry) Suwannee River fulvic acid (SRFA) and humic acid sodium salt (NaHA) aerosols was determined and modelled using Köhler theory. A single parameter, the ionic density (ρion), which contains physical properties that are not well established for these substances, was determined for SRFA and NaHA to be 2.1 × 10–3 and 7.0 × 10–3 mol cm–3 respectively. The hygroscopic growth was then modelled using the ρion-Köhler equation and the critical parameters determined. The critical percent supersaturation of SRFA and NaHA was determined to be 0.60 and 0.33% respectively using the surface tension of water; and 0.35 and 0.19% respectively using the surface tension of aqueous HULIS. κ-Köhler theory, was also used to calculate the critical supersaturation and was found to be in good agreement with the ρion representation. Both extinction FTIR of aerosols and ATR-FTIR absorption measurements of thin films confirm enhanced water uptake with increasing relative humidity (RH).

Additional keywords: HULIS, hygroscopic growth.


Acknowledgements

This work was supported by the National Science Foundation under grants CHE0503854 and ATM0613124. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not reflect the views of the National Science Foundation. C.D.H. also received funding from the University of Iowa Cardiovascular Center Institutional Research Fellowship.


References


[1]   M. O. Andreae , P. J. Crutzen , Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science 1997 , 276,  1052.
        | CrossRef | CAS |  

[2]   P. Saxena , L. M. Hildemann , Water-soluble organics in atmospheric particles – a critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem. 1996 , 24,  57.
        | CrossRef | CAS |  

[3]   S. Fuzzi , M. O. Andreae , B. J. Huebert , M. Kulmala , T. C. Bond , M. Boy , S. J. Doherty , A. Guenther , M. Kanakidou , V.-M. Kerminen , U. Lohmann , L. M. Russell , U. Pöschl , Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos. Chem. Phys. 2006 , 6,  2017.
        |  CAS |  

[4]   M. Kanakidou , J. H. Seinfeld , S. N. Pandis , F. J. Dentener , M. C. Facchini , R. Van Dingenen , B. Ervens , A. Nenes , et al. Organic aerosol and global climate modeling: a review. Atmos. Chem. Phys. 2005 , 5,  1053.
        |  CAS |  

[5]   H. Abdul-Razzak , S. J. Ghan , Influence of slightly soluble organics on aerosol activation. J. Geophys. Res. 2005 , 110,  D06206.
        | CrossRef |  

[6]   M. N. Chan , C. K. Chan , Hygroscopic properties of two model humic-like substances and their mixtures with inorganics of atmospheric importance. Environ. Sci. Technol. 2003 , 37,  5109.
        | CrossRef | CAS | PubMed |  

[7]   E. Dinar , T. Anttila , Y. Rudich , CCN activity and hygroscopic growth of organic aerosols following reactive uptake of ammonia. Environ. Sci. Technol. 2008 , 42,  793.
        | CrossRef | CAS | PubMed |  

[8]   C. D. Hatch , K. M. Gierlus , J. D. Shuttlefield , V. H. Grassian , Water absorption and cloud condensation nuclei activation of calcite and calcite coated with model humic and fulvic acids. Atmos. Environ. 2008 , 42,  5672.
        | CrossRef | CAS |  

[9]   B. L. Hemming , J. H. Seinfeld , On the hygroscopic behavior of atmospheric organic aerosols. Ind. Eng. Chem. Res. 2001 , 40,  4162.
        | CrossRef | CAS |  

[10]   C. Alves , C. Pio , A. Duarte , Composition of extractable organic matter of air particles from rural and urban Portuguese areas. Atmos. Environ. 2001 , 35,  5485.
        | CrossRef | CAS |  

[11]   B. Graham , O. L. Mayol-Bracero , P. Guyon , G. C. Roberts , S. Decesari , M. C. Facchini , P. Artaxo , W. Maenhaut , P. Köll , M. O. Andreae , Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS. J. Geophys. Res. 2002 , 107,  8047.
        | CrossRef |  

[12]   C. Pio , C. Alves , A. Duarte , Organic components of aerosols in a forested area of central Greece. Atmos. Environ. 2001 , 35,  389.
        | CrossRef | CAS |  

[13]   W. F. Rogge , M. A. Mazurek , L. M. Hildemann , G. R. Cass , B. R. T. Simoneit , Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation. Atmos. Environ. 1993 , 27A,  1309.
        |  CAS |  

[14]   C. Alves , A. Carvalho , C. Pio , Mass balance of organic fractions in the atmosphere. J. Geophys. Res. 2002 , 107,  8345.
        | CrossRef |  

[15]   I. Salma , R. Ocskay , I. Varga , W. Maenhaut , Surface tension of atmospheric humic-like substances in connection with relaxation, dilution, and solution pH. J. Geophys. Res. 2006 , 111,  D23205.
        | CrossRef |  

[16]   S. Yu , Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): a review. Atmos. Res. 2000 , 53,  185.
        | CrossRef | CAS |  

[17]   D. J. Donaldson , V. Vaida , The influence of organic films at the air-aqueous boundary on atmospheric processes. Chem. Rev. 2006 , 106,  1445.
        | CrossRef | CAS | PubMed |  

[18]   A. Falkovich , E. R. Graber , G. Schkolnik , Y. Rudich , W. Maenhaut , P. Artaxo , Low aerosol weight organic acids in the aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmos. Chem. Phys. 2005 , 5,  781.
        |  CAS |  

[19]   O. L. Mayol-Bracero , P. Guyon , B. Graham , G. Roberts , M. O. Andreae , S. Decesari , M. C. Facchini , S. Fuzzi , P. Artaxo , Water-soluble organic compounds in biomass burning over Amazonia 2. Apportionment of the chemical composition and the importance of the polyacidic fraction. J. Geophys. Res. 2002 , 107,  8091.
        | CrossRef |  

[20]   S. Decesari , S. Fuzzi , M. C. Facchini , M. Mircea , L. Emblico , F. Cavalli , W. Maenhaut , X. Chi , et al. Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmos. Chem. Phys. 2006 , 6,  375.
        |  CAS |  

[21]   E. R. Graber , Y. Rudich , Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 2006 , 6,  729.
        |  CAS |  

[22]   N. Havers , P. Burba , J. Lambert , D. Klockow , Spectroscopic characterization of humic-like substances in airborne particulate matter. J. Atmos. Chem. 1998 , 29,  45.
        | CrossRef | CAS |  

[23]   N. Calace , B. M. Petronio , R. Cini , A. M. Stortini , B. Pampaloni , R. Udisti , Humic marine matter and insoluble materials in Antarctic snow. Int. J. Environ. Anal. Chem. 2001 , 79,  331.
        | CrossRef | CAS |  

[24]   F. Cavalli , M. C. Facchini , S. Decesari , M. Mircea , L. Emblico , S. Fuzzi , D. Ceburnis , Y. J. Yoon , C. D. O’Dowd , J. P. Putaud , A. Dell’Acqua , Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J. Geophys. Res. 2004 , 109,  D24215.
        | CrossRef |  

[25]   E. Dinar , T. F. Mentel , Y. Rudich , The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles. Atmos. Chem. Phys. 2006 , 6,  5213.
        |  CAS |  

[26]   S. Zappoli , A. Andracchio , S. Fuzzi , M. C. Facchini , A. Gelencsér , G. Y. Kiss , Z. Krivácsy , Á. Molnár , E. Mészáros , H.-C. Hansson , K. Rosman , Y. Zebühr , Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility. Atmos. Environ. 1999 , 33,  2733.
        | CrossRef | CAS |  

[27]   H.-M. Hung , Y. Katrib , S. T. Martin , Products and mechanisms of the reaction of oleic acid with ozone and nitrate radical. J. Phys. Chem. A 2005 , 109,  4517.
        | CrossRef | CAS | PubMed |  

[28]   J. Zahardis , B. W. LaFranchi , G. A. Petrucci , Direct observation of polymerization in the oleic acid – ozone heterogeneous reaction system by photoelectron resonance capture ionization aerosol mass spectrometry. Atmos. Environ. 2006 , 40,  1661.
        | CrossRef | CAS |  

[29]   M. Jang , N. M. Czoschke , R. M. Kamens , Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 2002 , 298,  814.
        | CrossRef | CAS | PubMed |  

[30]   M. P. Tolocka , M. Jang , J. M. Ginter , F. J. Cox , R. M. Kamens , M. V. Johnston , Formation of oligomers in secondary organic aerosol. Environ. Sci. Technol. 2004 , 38,  1428.
        | CrossRef | CAS | PubMed |  

[31]   U. Baltensperger , M. Kalberer , J. Dommen , D. Paulsen , M. R. Alfarra , H. Coe , R. Fisseha , A. Gascho , et al. Secondary organic aerosols from anthropogenic and biogenic precursors. Faraday Discuss. 2005 , 130,  265.
        | CrossRef | CAS | PubMed |  

[32]   M. Kalberer , D. Paulsen , M. Sax , M. Steinbacher , J. Dommen , A. S. H. Prevot , R. Fisseha , E. Weingartner , V. Frankevich , R. Zenobi , U. Baltensperger , Identification of polymers as major components of atmospheric organic aerosols. Science 2004 , 303,  1659.
        | CrossRef | CAS | PubMed |  

[33]   B. J. Holmes , G. A. Petrucci , Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols. J. Atmos. Chem. 2007 , 58,  151.
        | CrossRef | CAS |  

[34]   H. Wex , T. Hennig , I. Salma , R. Ocskay , A. Kiselev , S. Henning , A. Massling , A. Wiedensohler , F. Stratmann , Hygroscopic growth and measured and modeled critical supersaturations of an atmospheric HULIS sample. Geophys. Res. Lett. 2007 , 34,  L02818.
        | CrossRef |  

[35]   E. Dinar , I. Taraniuk , E. R. Graber , T. Anttila , T. F. Mentel , Y. Rudich , Hygroscopic growth of atmospheric and model humic-like substances. J. Geophys. Res. 2007 , 112,  D05211.
        | CrossRef |  

[36]   A. Hoffer , A. Gelencsér , P. Guyon , G. Kiss , O. Schmid , G. P. Frank , P. Artaxo , M. O. Andreae , Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 2006 , 6,  3563.
        |  CAS |  

[37]   E. Dinar , I. Taranuik , E. R. Graber , S. Katsman , T. Moise , T. Anttila , T. F. Mentel , Y. Rudich , Cloud condensation nuclei properties of model and atmospheric HULIS. Atmos. Chem. Phys. 2006 , 6,  2465.
        |  CAS |  

[38]   G. Kiss , E. Tombácz , H.-C. Hansson , Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol. J. Atmos. Chem. 2005 , 50,  279.
        | CrossRef | CAS |  

[39]   V. Samburova , R. Zenobi , M. Kalberer , Characterization of high molecular weight compounds in urban atmospheric particles. Atmos. Chem. Phys. 2005 , 5,  2163.
        |  CAS |  

[40]   E. R. Gibson , P. K. Hudson , V. H. Grassian , Physicochemical properties of nitrate aerosols: Implications for the atmosphere. J. Phys. Chem. A 2006 , 110,  11785.
        | CrossRef | CAS | PubMed |  

[41]   Gibson E. R., Mineral dust aerosol chemistry and climate 2007, Ph.D. Dissertation, University of Iowa.

[42]   Timonen H. J., Saarikoski S. K., Aurela M. A., Saarnio K. M., Hillamo R. E. J., Water-soluble organic carbon in urban aerosol: Concentrations, size distributions and contribution to particulate matter. Boreal Environ. Res. 2008, 13, 335. Available at http://www.borenv.net/BER/pdfs/ber13/ber13-335.pdf [Verified 13 October 2009]

[43]   S. Sjogren , M. Gysel , E. Weingartner , U. Baltensperger , M. J. Cubison , H. Coe , A. A. Zardini , C. Marcolli , U. K. Krieger , T. Peter , Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures. J. Aerosol Sci. 2007 , 38,  157.
        | CrossRef | CAS |  

[44]   J. Schuttlefield , H. Al-Hosney , A. Zachariah , V. H. Grassian , Attenuated total reflection Fourier transform infrared spectroscopy to investigate water uptake and phase transitions in atmospherically relevant particles. Appl. Spectrosc. 2007 , 61,  283.
        | CrossRef | CAS | PubMed |  

[45]   M. D. Petters , S. M. Kreidenweis , A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007 , 7,  1961.
        |  CAS |  

[46]   M. D. Petters , S. M. Kreidenweis , A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 2: Including solubility. Atmos. Chem. Phys. 2008 , 8,  6273.
        |  CAS |  

[47]   C. L. Badger , I. George , P. T. Griffiths , C. F. Braban , R. A. Cox , J. P. D. Abbatt , Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate. Atmos. Chem. Phys. 2006 , 6,  755.
        |  CAS |  

[48]   M. Gysel , E. Weingartner , S. Nyeki , D. Paulsen , U. Baltensperger , I. Galambos , G. Kiss , Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol. Atmos. Chem. Phys. 2004 , 4,  35.
        |  CAS |  

[49]   S. D. Brooks , P. J. DeMott , S. M. Kreidenweis , Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate. Atmos. Environ. 2004 , 38,  1859.
        | CrossRef | CAS |  

[50]   B. Svenningsson , J. Rissler , E. Swietlicki , M. Mircea , M. Bilde , M. C. Facchini , S. Decesari , S. Fuzzi , J. Zhou , J. Mønster , T. Rosenørn , Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys. 2006 , 6,  1937.
        |  CAS |  

[51]   R. L. Malcolm , P. MacCarthy , Limitations in the use of commercial humic acids in water and soil research. Environ. Sci. Technol. 1986 , 20,  904.
        | CrossRef | CAS |  

[52]   H. Kokkola , R. Sorjamaa , A. Peräniemi , T. Raatikainen , A. Laaksonen , Cloud formation of particles containing humic-like substances. Geophys. Res. Lett. 2006 , 33,  L10816.
        | CrossRef |  

[53]   H. Fu , X. Quan , Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation. Chemosphere 2006 , 63,  403.
        | CrossRef | CAS | PubMed |  

[54]   Li D., Gaussoin R., Characterizing soil organic matter in golf course putting greens. USGA Turfgrass and Environ. Res. Online 2008, 7, 1. Available at http://usgatero.msu.edu/v07/n10.pdf [Verified 13 October 2009]

[55]   D. G. Lumsdon , A. R. Fraser , Infrared spectroscopic evidence supporting heterogeneous site binding models for humic substances. Environ. Sci. Technol. 2005 , 39,  6624.
        | CrossRef | CAS | PubMed |  

[56]   Socrates G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd edn 2001 (Wiley: Chichester, UK).

[57]   Socrates G., Infrared Characteristic Group Frequencies Tables and Charts 1994 (Wiley: New York).

[58]   Silverstein R. M., Morrill T. C., Bassler G. C., Spectrometric Identification of Organic Compounds 1991 (Wiley: New York).

[59]   R. M. B. O. Duarte , E. B. H. Santos , C. A. Pio , A. C. Duarte , Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances. Atmos. Environ. 2007 , 41,  8100.
        | CrossRef | CAS |  

[60]   T. H. Yoon , S. B. Johnson , G. E. Brown , Adsorption of organic matter at mineral/water interfaces. IV. Adsorption of humic substances at boehmite/water interfaces and impact on boehmite dissolution. Langmuir 2005 , 21,  5002.
        | CrossRef | CAS | PubMed |  



Rent Article (via Deepdyve) Export Citation Cited By (7)