Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances

E. Tipping A C , S. Lofts A and J. E. Sonke B

A Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, United Kingdom.

B Géoscience Environnement Toulouse, Observatoire Midi-Pyrénées, CNRS/IRD/UPS, 14 Avenue Edouard Belin, F-31400, Toulouse, France.

C Corresponding author. Email: et@ceh.ac.uk

Environmental Chemistry 8(3) 225-235 https://doi.org/10.1071/EN11016
Submitted: 16 February 2011  Accepted: 30 March 2011   Published: 22 June 2011

Environmental context. Natural organic matter exerts a powerful control on chemical conditions in waters and soils, affecting pH and influencing the biological availability, transport and retention of metals. To quantify the reactions, we collated a wealth of laboratory data covering 40 metals and acid–base reactions, and used them to parameterise the latest in a series of Humic Ion-Binding Models. Model VII is now available to interpret field data, and contribute to the prediction of environmental chemistry.

Abstract. Humic Ion-Binding Model VII aims to predict the competitive reactions of protons and metals with natural organic matter in soils and waters, based on laboratory results with isolated humic and fulvic acids (HA and FA). Model VII is simpler in its postulated multidentate metal binding sites than the previous Model VI. Three model parameters were eliminated by using a formal relationship between monodentate binding to strong- and weak-acid oxygen-containing ligands, and removing factors that provide ranges of ligand binding strengths. Thus Model VII uses a single adjustable parameter, the equilibrium constant for monodentate binding to strong-acid (carboxylate) groups (KMA), for each metallic cation. Proton-binding parameters, and mean values of log KMA were derived by fitting 248 published datasets (28 for protons, 220 for cationic metals). Default values of log KMA for FA were obtained by combining the fitted values for FA, results for HA, and the relationship for different metals between log KMA and equilibrium constants for simple oxygen-containing ligands. The equivalent approach was used for HA. The parameterised model improves on Model VI by incorporating more metals (40), providing better descriptions of metal binding at higher pH, and through more internally consistent parameter values.


References

[1]  E. Tipping, WHAM – A chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site/electrostatic model of ion-binding by humic substances. Comput. Geosci. 1994, 20, 973.
WHAM – A chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete-site/electrostatic model of ion-binding by humic substances.CrossRef | 1:CAS:528:DyaK2MXhtlyhtrY%3D&md5=ff1fad234a23210b70b4a7a0af81dbebCAS | open url image1

[2]  E. Tipping, Cation Binding by Humic Substances 2002 (Cambridge University Press: Cambridge, UK).

[3]  E. Tipping, M. A. Hurley, A unifying model of cation binding by humic substances. Geochim. Cosmochim. Acta 1992, 56, 3627.
A unifying model of cation binding by humic substances.CrossRef | 1:CAS:528:DyaK38XmsFGitLc%3D&md5=6ef97185d928e90bedfd601a2f1283dbCAS | open url image1

[4]  E. Tipping, Humic Ion-Binding Model VI: an improved description of ion-binding by humic substances. Aquat. Geochem. 1998, 4, 3.
Humic Ion-Binding Model VI: an improved description of ion-binding by humic substances.CrossRef | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=b691b52d3cb423544a67e094a347a8e7CAS | open url image1

[5]  D. G. Kinniburgh, W. H. van Riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti, M. J. Avena, Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloid Surf. A 1999, 151, 147.. open url image1

[6]  S. E. Cabaniss, Forward modeling of metal complexation by NOM: I. A priori prediction of conditional constants and speciation. Environ. Sci. Technol. 2009, 43, 2838.
Forward modeling of metal complexation by NOM: I. A priori prediction of conditional constants and speciation.CrossRef | 1:CAS:528:DC%2BD1MXjt1ahsLY%3D&md5=13a35a12ac0efa71d1f933db1f53d3c8CAS | 19475959PubMed | open url image1

[7]  E. Tipping, D. Berggren, J. Mulder, C. Woof, Modeling the solid-solution distributions of protons, aluminum, base cations and humic substances in acid soils. Eur. J. Soil Sci. 1995, 46, 77.
Modeling the solid-solution distributions of protons, aluminum, base cations and humic substances in acid soils.CrossRef | 1:CAS:528:DyaK2MXmtlGgtLw%3D&md5=df6076194d8dc65b8091280ed7fcdb3fCAS | open url image1

[8]  H. A. de Wit, M. Kotowski, J. Mulder, Modeling aluminum and organic matter solubility in the forest floor using WHAM. Soil Sci. Soc. Am. J. 1999, 63, 1141.
Modeling aluminum and organic matter solubility in the forest floor using WHAM.CrossRef | 1:CAS:528:DyaK1MXns12muro%3D&md5=f54bd81ca4042139a0eba5660712f2d2CAS | open url image1

[9]  H. A. de Wit, T. Groseth, J. Mulder, Predicting aluminum and soil organic matter solubility using the mechanistic equilibrium model WHAM. Soil Sci. Soc. Am. J. 2001, 65, 1089.
Predicting aluminum and soil organic matter solubility using the mechanistic equilibrium model WHAM.CrossRef | 1:CAS:528:DC%2BD3MXntFeqtb4%3D&md5=2f56700955e1e5796d256dfb7c025553CAS | open url image1

[10]  S. Lofts, C. Woof, E. Tipping, N. Clarke, J. Mulder, Modelling pH buffering and aluminium solubility in European forest soils. Eur. J. Soil Sci. 2001, 52, 189.
Modelling pH buffering and aluminium solubility in European forest soils.CrossRef | 1:CAS:528:DC%2BD3MXltVKkurc%3D&md5=29b43c1461c1f4f92f0c4aedb6edbb68CAS | open url image1

[11]  B. Jansen, J. Mulder, J. M. Verstraten, Organic complexation of Al and Fe in acidic soil solutions – Comparison of diffusive gradients in thin films analyses with Models V and VI predictions. Anal. Chim. Acta 2003, 498, 105.
Organic complexation of Al and Fe in acidic soil solutions – Comparison of diffusive gradients in thin films analyses with Models V and VI predictions.CrossRef | 1:CAS:528:DC%2BD3sXos12ku7w%3D&md5=40fb1580265a5b61109167ce7cbcc86aCAS | open url image1

[12]  B. Jansen, J. Mulder, J. M. Verstraten, Modeling aluminum solubility in intrazonal podzois using WHAM-S/model. J. Plant Nutr. Soil Sci. 2005, 168, 325.
Modeling aluminum solubility in intrazonal podzois using WHAM-S/model.CrossRef | 1:CAS:528:DC%2BD2MXlvVagsrc%3D&md5=d2fa59d3de755f8d4b85371c4d4ae183CAS | open url image1

[13]  J. D. Cooke, J. Hamilton-Taylor, E. Tipping, On the acid-base properties of humic acid in soil. Environ. Sci. Technol. 2007, 41, 465.
On the acid-base properties of humic acid in soil.CrossRef | 1:CAS:528:DC%2BD28Xht1OmsL%2FI&md5=f1a9c29118214ba1eb44ac5349bb627aCAS | 17310708PubMed | open url image1

[14]  J. D. Cooke, E. Tipping, J. Hamilton-Taylor, Proton interactions with soil organic matter; the importance of aggregation and the weak acids of humin. Eur. J. Soil Sci. 2008, 59, 1111.
Proton interactions with soil organic matter; the importance of aggregation and the weak acids of humin.CrossRef | 1:CAS:528:DC%2BD1MXmvV2ksA%3D%3D&md5=b4b8f4345aaee7d7cb98e3a1825fc818CAS | open url image1

[15]  E. Tipping, H. T. Carter, Aluminium speciation in streams and lakes of the UK Acid Waters Monitoring Network, modelled with WHAM. Sci. Total Environ. 2011, 409, 1550.
Aluminium speciation in streams and lakes of the UK Acid Waters Monitoring Network, modelled with WHAM.CrossRef | 1:CAS:528:DC%2BC3MXisFWrsL8%3D&md5=164fda39e2159298cbbd6cd6ba5e6252CAS | 21277614PubMed | open url image1

[16]  A. L. Nolan, M. J. McLaughlin, S. D. Mason, Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using Donnan dialysis. Environ. Sci. Technol. 2003, 37, 90.
Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using Donnan dialysis.CrossRef | 1:CAS:528:DC%2BD38XovV2ltLs%3D&md5=2734f3b6c5977d460d45447a468c8df6CAS | 12542296PubMed | open url image1

[17]  E. Tipping, J. Rieuwerts, G. Pan, M. R. Ashmore, S. Lofts, M. T. R. Hill, M. E. Farago, I. Thornton, The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ. Pollut. 2003, 125, 213.
The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales.CrossRef | 1:CAS:528:DC%2BD3sXksF2gsrw%3D&md5=a50173268ce0e4c5a31ff9c9cb5e1a07CAS | 12810315PubMed | open url image1

[18]  R. Vulkan, F.-J. Zhao, V. Barbosa-Jefferson, S. Preston, G. I. Paton, E. Tipping, S. P. McGrath, Copper speciation and impacts on bacterial biosensors in the pore water of copper-contaminated soils. Environ. Sci. Technol. 2000, 34, 5115.
Copper speciation and impacts on bacterial biosensors in the pore water of copper-contaminated soils.CrossRef | 1:CAS:528:DC%2BD3cXnvVKnsb0%3D&md5=5205ebbf9cd6404ed22d88cbb389d8f0CAS | open url image1

[19]  L. J. Evans, B. Sengdy, D. G. Lumsdon, D. A. Stanbury, Cadmium adsorption by an organic soil: a comparison of some humic–metal complexation models. Chem. Spec. Bioavail. 2003, 15, 93.
Cadmium adsorption by an organic soil: a comparison of some humic–metal complexation models.CrossRef | 1:CAS:528:DC%2BD2cXhslKqtrk%3D&md5=3b7288a5423d847e4efa18c79680b651CAS | open url image1

[20]  A. M. Tye, S. Young, N. M. J. Crout, H. Zhang, S. Preston, F. J. Zhao, S. P. McGrath, Speciation and solubility of Cu, Ni and Pb in contaminated soils. Eur. J. Soil Sci. 2004, 55, 579.
Speciation and solubility of Cu, Ni and Pb in contaminated soils.CrossRef | 1:CAS:528:DC%2BD2cXotVCntL8%3D&md5=3195dda6e82470309857b66be51b9b80CAS | open url image1

[21]  A. R. Almås, S. Lofts, J. Mulder, E. Tipping, Solubility of major cations and Cu, Zn and Cd in soil extracts of some contaminated agricultural soils near a zinc smelter in Norway: modelling with a multisurface extension of WHAM. Eur. J. Soil Sci. 2007, 58, 1074.
Solubility of major cations and Cu, Zn and Cd in soil extracts of some contaminated agricultural soils near a zinc smelter in Norway: modelling with a multisurface extension of WHAM.CrossRef | open url image1

[22]  Z. Q. Shi, H. E. Allen, D. M. Di Toro, S. Z. Lee, D. M. F. Meza, S. Lofts, Predicting cadmium adsorption on soils using WHAM VI. Chemosphere 2007, 69, 605.
Predicting cadmium adsorption on soils using WHAM VI.CrossRef | 1:CAS:528:DC%2BD2sXpvFGlt74%3D&md5=8d697d5eb88e6ce10e7ba9c516c206c3CAS | 17459454PubMed | open url image1

[23]  J. Hamilton-Taylor, L. Giusti, W. Davison, W. Tych, C.N. Hewitt, Sorption of trace metals (Cu, Pb, Zn) by suspended lake particles in artificial (0.005 M NaNO3) and natural (Esthwaite Water) freshwaters. Colloid Surf. A 1997, 120, 205.
Sorption of trace metals (Cu, Pb, Zn) by suspended lake particles in artificial (0.005 M NaNO3) and natural (Esthwaite Water) freshwaters.CrossRef | 1:CAS:528:DyaK2sXht1Khu7Y%3D&md5=5ced6fa44dcb6dfb27508ef785f65624CAS | open url image1

[24]  J. R. Ferreira, A. J. Lawlor, J. M. Bates, K. J. Clarke, E. Tipping, Chemistry of riverine and estuarine suspended particles from the Ouse–Trent system, UK. Colloid Surf. A 1997, 120, 183.
Chemistry of riverine and estuarine suspended particles from the Ouse–Trent system, UK.CrossRef | 1:CAS:528:DyaK2sXht1Khu7s%3D&md5=d673e78ea3266d065de11b0e87e67742CAS | open url image1

[25]  J. Hamilton-Taylor, A. S. Postill, E. Tipping, M. P. Harper, Laboratory measurements and modeling of metal-humic interactions under estuarine conditions. Geochim. Cosmochim. Acta 2002, 66, 403.
Laboratory measurements and modeling of metal-humic interactions under estuarine conditions.CrossRef | 1:CAS:528:DC%2BD38XmtFensQ%3D%3D&md5=916da48caaf89a960e5cd42788444de2CAS | open url image1

[26]  D. M. Hill, A. C. Aplin, Role of colloids and fine particles in the transport of metals in rivers draining carbonate and silicate terrains. Limnol. Oceanogr. 2001, 46, 331.
Role of colloids and fine particles in the transport of metals in rivers draining carbonate and silicate terrains.CrossRef | 1:CAS:528:DC%2BD3MXjtVWgsLc%3D&md5=d19ee6088630d990c408a2ddd81e00cfCAS | open url image1

[27]  S. E. Bryan, E. Tipping, J. Hamilton-Taylor, Comparison of measured and modelled copper binding by natural organic matter in freshwaters. Comp. Biochem. Physiol. C 2002, 133, 37.
Comparison of measured and modelled copper binding by natural organic matter in freshwaters.CrossRef | 1:STN:280:DC%2BD38nmsFGhtA%3D%3D&md5=693e506c4b8d7ccf08a378369ea390a7CAS | open url image1

[28]  T. Cheng, K. De Schamphelaere, S. Lofts, C. Janssen, H. E. Allen, Measurement and computation of zinc binding to natural dissolved organic matter in European surface waters. Anal. Chim. Acta 2005, 542, 230.
Measurement and computation of zinc binding to natural dissolved organic matter in European surface waters.CrossRef | 1:CAS:528:DC%2BD2MXltFGnsLo%3D&md5=58e54ca09a457bc8fa511de961271ce4CAS | open url image1

[29]  J. W. Guthrie, N. M. Hassan, M. S. A. Salam, I. I. Fasfous, C. A. Murimboh, J. Murimboh, C. L. Chakrabarti, D. C. Grégoire, Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI. Anal. Chim. Acta 2005, 528, 205.
Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI.CrossRef | 1:CAS:528:DC%2BD2MXkslyhsg%3D%3D&md5=e26b5ea1cc1d7f64da611a8e7efe21eeCAS | open url image1

[30]  A. Turner, M. Martino, Modelling the equilibrium speciation of nickel in the Tweed Estuary, UK: voltammetric determinations and simulations using WHAM. Mar. Chem. 2006, 102, 198.
Modelling the equilibrium speciation of nickel in the Tweed Estuary, UK: voltammetric determinations and simulations using WHAM.CrossRef | 1:CAS:528:DC%2BD28XhtVWrt7vF&md5=184d036e72eb43273b5380869d7945c1CAS | open url image1

[31]  L. S. Balistrieri, R. G. Blank, Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: comparisons among chemical equilibrium models and implications for biotic ligand models. Appl. Geochem. 2008, 23, 3355.
Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: comparisons among chemical equilibrium models and implications for biotic ligand models.CrossRef | 1:CAS:528:DC%2BD1cXhsVWms73K&md5=64314208b18393d74d6cbe279e743d60CAS | open url image1

[32]  J. B. Christensen, J. J. Botma, T. H. Christensen, Complexation of Cu and Pb by DOC in polluted groundwater: a comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2). Water Res. 1999, 33, 3231.
Complexation of Cu and Pb by DOC in polluted groundwater: a comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2).CrossRef | 1:CAS:528:DyaK1MXmtlOisb8%3D&md5=29a16c6934f837c03fc9f2b8d2032994CAS | open url image1

[33]  A. Tessier, D. Fortin, N. Belzile, R. R. DeVitre, G. G. Leppard, Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements. Geochim. Cosmochim. Acta 1996, 60, 387.
Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements.CrossRef | 1:CAS:528:DyaK28XhtVGiu70%3D&md5=1d53bac53640c10fd78628649b5800ccCAS | open url image1

[34]  M. C. Alfaro-De la Torre, A. Tessier, Cadmium deposition and mobility in the sediments of an acidic oligotrophic lake. Geochim. Cosmochim. Acta 2002, 66, 3549.
Cadmium deposition and mobility in the sediments of an acidic oligotrophic lake.CrossRef | 1:CAS:528:DC%2BD38XnsFOku74%3D&md5=fcd758857653c027743082e32f17d374CAS | open url image1

[35]  J. W. Tang, K. H. Johannesson, Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach. Geochim. Cosmochim. Acta 2003, 67, 2321.
Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach.CrossRef | 1:CAS:528:DC%2BD3sXkslKjtb0%3D&md5=3792fd160cb44635cdd383618f3a257eCAS | open url image1

[36]  J. Sonke, Lanthanide-humic substances complexation. II. Calibration of Humic Ion-Binding Model V. Environ. Sci. Technol. 2006, 40, 7481.
Lanthanide-humic substances complexation. II. Calibration of Humic Ion-Binding Model V.CrossRef | 1:CAS:528:DC%2BD28XlslOksrg%3D&md5=9e7464a2b9e4751853d7fa1fcdace72dCAS | 17256484PubMed | open url image1

[37]  O. Pourret, M. Davranche, G. Gruau, A. Dia, Organic complexation of rare earth elements in natural waters: evaluating model calculations from ultrafiltration data. Geochim. Cosmochim. Acta 2007, 71, 2718.
Organic complexation of rare earth elements in natural waters: evaluating model calculations from ultrafiltration data.CrossRef | 1:CAS:528:DC%2BD2sXlslWlsr4%3D&md5=4ea9b29d54ca1adf6a874eebd5a5ef9bCAS | open url image1

[38]  E. Tipping, C. Rey-Castro, S. E. Bryan, J. Hamilton-Taylor, AlIII and FeIII binding by humic substances in freshwaters, and implications for trace metal speciation. Geochim. Cosmochim. Acta 2002, 66, 3211.
AlIII and FeIII binding by humic substances in freshwaters, and implications for trace metal speciation.CrossRef | 1:CAS:528:DC%2BD38XmslKktbk%3D&md5=a25ce479a1d5c2747391b029a1720eccCAS | open url image1

[39]  J. Hamilton-Taylor, E. J. Smith, W. Davison, M. Sugiyama, Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behavior in a seasonally anoxic lake. Geochim. Cosmochim. Acta 2005, 69, 1947.
Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behavior in a seasonally anoxic lake.CrossRef | 1:CAS:528:DC%2BD2MXjsFant7g%3D&md5=3f561de3b63e1cd8a4a0c9da74777ef6CAS | open url image1

[40]  S. Lofts, E. Tipping, J. Hamilton-Taylor, The chemical speciation of FeIII in freshwaters. Aquat. Geochem. 2008, 14, 337.
The chemical speciation of FeIII in freshwaters.CrossRef | 1:CAS:528:DC%2BD1cXht12gtLzN&md5=f58811c57a05d7bc8eefbd42797526e4CAS | open url image1

[41]  C. Neal, S. Lofts, C. D. Evans, B. Reynolds, E. Tipping, M. Neal, Increasing iron concentrations in UK upland waters. Aquat. Geochem. 2008, 14, 263.
Increasing iron concentrations in UK upland waters.CrossRef | 1:CAS:528:DC%2BD1cXovF2it7w%3D&md5=c7e026ac5fbec1d65d2c1a8be4fdb874CAS | open url image1

[42]  S. Lofts, E. Tipping, A.L. Sanchez, B.A. Dodd, Modelling the role of humic acid in radiocaesium distribution in a British upland peat soil. J. Environ. Radioact. 2002, 61, 133.
Modelling the role of humic acid in radiocaesium distribution in a British upland peat soil.CrossRef | 1:CAS:528:DC%2BD38XjtVejtro%3D&md5=933adc674380eca6138b34a223e485ebCAS | 12066976PubMed | open url image1

[43]  A. J. Peters, J. Hamilton-Taylor, E. Tipping, Americium binding to humic acid. Environ. Sci. Technol. 2001, 35, 3495.
Americium binding to humic acid.CrossRef | 1:CAS:528:DC%2BD3MXlsFOqtLc%3D&md5=57015f04ca51fff073926d87eec5829fCAS | 11563652PubMed | open url image1

[44]  E. R. Unsworth, P. Jones, S. J. Hill, The effect of thermodynamic data on computer model predictions of uranium speciation in natural water systems. J. Environ. Monit. 2002, 4, 528.
The effect of thermodynamic data on computer model predictions of uranium speciation in natural water systems.CrossRef | 1:CAS:528:DC%2BD38Xls1ant7k%3D&md5=fdf071b668718a602435d5d4884073cdCAS | 12195995PubMed | open url image1

[45]  E. Tipping, C. Woof, M. Kelly, K. Bradshaw, J. E. Rowe, Solid-solution distributions of radionuclides in acid soils – application of the WHAM chemical speciation model. Environ. Sci. Technol. 1995, 29, 1365.
Solid-solution distributions of radionuclides in acid soils – application of the WHAM chemical speciation model.CrossRef | 1:CAS:528:DyaK2MXkvVWrsrg%3D&md5=113308b79b7fd8c7b99618b065af70a5CAS | open url image1

[46]  E. Tipping, C. Woof, The distribution of humic substances between the solid and aqueous phases of acid organic soils – a description based on humic heterogeneity and charge-dependent sorption equilibria. J. Soil Sci. 1991, 42, 437.
The distribution of humic substances between the solid and aqueous phases of acid organic soils – a description based on humic heterogeneity and charge-dependent sorption equilibria.CrossRef | 1:CAS:528:DyaK38XitVahtg%3D%3D&md5=291116f24edd8aefe1945f72cbe7ca41CAS | open url image1

[47]  S. Lofts, B. M. Simon, E. Tipping, C. Woof, Modelling the solid-solution partitioning of organic matter in European forest soils. Eur. J. Soil Sci. 2001, 52, 215.
Modelling the solid-solution partitioning of organic matter in European forest soils.CrossRef | 1:CAS:528:DC%2BD3MXltVKku78%3D&md5=87944d02ed4dfd47f2aa22b5c4e535fcCAS | open url image1

[48]  E. Tipping, A. J. Lawlor, S. Lofts, Simulating the long-term chemistry of an upland UK catchment: major solutes and acidification. Environ. Pollut. 2006, 141, 151.
Simulating the long-term chemistry of an upland UK catchment: major solutes and acidification.CrossRef | 1:CAS:528:DC%2BD28Xis1Wgsbc%3D&md5=b348773f9d64e9bfe3c0b1f4afb694c2CAS | 16236408PubMed | open url image1

[49]  E. Tipping, A. J. Lawlor, S. Lofts, L. Shotbolt, Simulating the long-term chemistry of an upland UK catchment: heavy metals. Environ. Pollut. 2006, 141, 139.
Simulating the long-term chemistry of an upland UK catchment: heavy metals.CrossRef | 1:CAS:528:DC%2BD28Xis1WgsbY%3D&md5=c9ad4170ad5752dd9f8ecee294dc753eCAS | 16219402PubMed | open url image1

[50]  C. D. Vincent, A. J. Lawlor, E. Tipping, Accumulation of Al, Mn, Fe, Cu, Zn, Cd and Pb by the bryophyte Scapania undulata in three upland waters of different pH. Environ. Pollut. 2001, 114, 93.
Accumulation of Al, Mn, Fe, Cu, Zn, Cd and Pb by the bryophyte Scapania undulata in three upland waters of different pH.CrossRef | 1:CAS:528:DC%2BD3MXkvVaku7Y%3D&md5=8747194fb07987382d3a15646ec8b63eCAS | 11444010PubMed | open url image1

[51]  E. Tipping, C. D. Vincent, A. J. Lawlor, S. Lofts, Metal accumulation by stream bryophytes, related to chemical speciation. Environ. Pollut. 2008, 156, 936.
Metal accumulation by stream bryophytes, related to chemical speciation.CrossRef | 1:CAS:528:DC%2BD1cXhsVSgtb3J&md5=b7c71a1ee37d4f9ae78fa5cacce0b667CAS | 18541353PubMed | open url image1

[52]  P. R. Paquin, J. W. Gorsuch, S. Apte, G. E. Batley, K. C. Bowles, P. G. C. Campbell, C. G. Delos, D. M. Di Toro, R. L. Dwyer, F. Galvez, R. W. Gensemer, G. G. Goss, C. Hogstrand, C. R. Janssen, J. C. McGeer, R. B. Naddy, R. C. Playle, R. C. Santore, U. Schneider, W. A. Stubblefield, C. M. Wood, K. B. Wu, The biotic ligand model: a historical overview. Comp. Biochem. Physiol. C 2002, 133, 3.
The biotic ligand model: a historical overview.CrossRef | open url image1

[53]  D. M. Di Toro, H. E. Allen, H. L. Bergman, J. S. Meyer, P. R. Paquin, R. C. Santore, Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 2001, 20, 2383.
Biotic ligand model of the acute toxicity of metals. 1. Technical basis.CrossRef | 1:CAS:528:DC%2BD38XitlWnuw%3D%3D&md5=98ac74875b8364d484a1bf8d1a2dd7c9CAS | 11596774PubMed | open url image1

[54]  C. Karlén, I. O. Wallinder, D. Heijerick, C. Leygraf, C. R. Janssen, Runoff rates and ecotoxicity of zinc induced by atmospheric corrosion. Sci. Total Environ. 2001, 277, 169.
Runoff rates and ecotoxicity of zinc induced by atmospheric corrosion.CrossRef | 11589397PubMed | open url image1

[55]  K. A. C. De Schamphelaere, C. R. Janssen, A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ. Sci. Technol. 2002, 36, 48.
A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH.CrossRef | 1:CAS:528:DC%2BD3MXoslSgtbY%3D&md5=fbaffc7bcb6e4229d34d4cc15d30089fCAS | 11817370PubMed | open url image1

[56]  K. A. C. De Schamphelaere, F. M. Vasconcelos, D. G. Heijerick, F. M. G. Tack, K. Delbeke, H. E. Allen, C. R. Janssen, Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 2003, 22, 2454.
Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata.CrossRef | 1:CAS:528:DC%2BD3sXnslKis7s%3D&md5=f037572b0bbdcf435708a244214be1bdCAS | 14552011PubMed | open url image1

[57]  A. R. Almås, P. Lombnæs, T. A. Sogn, J. Mulder, Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere 2006, 62, 1647.
Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass.CrossRef | 16084561PubMed | open url image1

[58]  B. E. Wesolek, E. K. Genrich, J. M. Gunn, K. M. Somers, Use of littoral benthic invertebrates to assess factors affecting biological recovery of acid- and metal-damaged lakes. J. N. Am. Benthol. Soc. 2010, 29, 572.
Use of littoral benthic invertebrates to assess factors affecting biological recovery of acid- and metal-damaged lakes.CrossRef | open url image1

[59]  A. Stockdale, E. Tipping, S. Lofts, S. J. Ormerod, W. H. Clements, R. Blust, Toxicity of proton–metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquat. Toxicol. 2010, 100, 112.
Toxicity of proton–metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability.CrossRef | 1:CAS:528:DC%2BC3cXhtFGjurbM&md5=d237a544d22721cc6fae67c990d5b3b1CAS | 20701986PubMed | open url image1

[60]  J. R. Hall, M. Ashmore, J. Fawehinmi, C. Jordan, S. Lofts, L. Shotbolt, D. J. Spurgeon, C. Svendsen, E. Tipping, Developing a critical load approach for national risk assessments of atmospheric metal deposition. Environ. Toxicol. Chem. 2006, 25, 883.
Developing a critical load approach for national risk assessments of atmospheric metal deposition.CrossRef | 1:CAS:528:DC%2BD28XitVais7g%3D&md5=45a05f6521f85b525aaaf0c311cef402CAS | 16566175PubMed | open url image1

[61]  W. de Vries, S. Lofts, E. Tipping, M. Meili, J. E. Groenenberg, G. Schutze, Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects. Rev. Environ. Contam. Toxicol. 2007, 191, 47.
Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects.CrossRef | 1:CAS:528:DC%2BD2sXhtVSksb7I&md5=81ec8920c166333684ca3216c4f492feCAS | 17708072PubMed | open url image1

[62]  E. Tipping, S. Lofts, H. Hooper, B. Frey, D. Spurgeon, C. Svendsen, Critical limits for HgII in soils, derived from chronic toxicity data. Environ. Pollut. 2010, 158, 2465.
Critical limits for HgII in soils, derived from chronic toxicity data.CrossRef | 1:CAS:528:DC%2BC3cXmvVWjs7c%3D&md5=5f8884a60c43cab97a4b71565f2d3460CAS | 20434245PubMed | open url image1

[63]  M. A. Glaus, W. Hummel, L. R. Van Loon, Experimental determination and modelling of trace metal–humate interactions: a pragmatic approach for applications in groundwater. Paul Scherrer Institute Report 97-13 1997 (Paul Scherrer Institute: Villigen, Switzerland).

[64]  R. F. Carbonaro, D. M. Di Toro, Linear free energy relationships for metal-ligand complexation: monodentate binding to negatively charged oxygen donor atoms. Geochim. Cosmochim. Acta 2007, 71, 3958.
Linear free energy relationships for metal-ligand complexation: monodentate binding to negatively charged oxygen donor atoms.CrossRef | 1:CAS:528:DC%2BD2sXosFens7s%3D&md5=20064ccb9d397e99f305aff5e773969cCAS | open url image1

[65]  H. Irving, H. Rossotti, Some relationships among the stabilities of metal complexes. Acta Chem. Scand. 1956, 10, 72.
Some relationships among the stabilities of metal complexes.CrossRef | 1:CAS:528:DyaG28Xmtlyhug%3D%3D&md5=d19b55e54f8c3eac514e03ca526f62b3CAS | open url image1

[66]  C. J. Milne, Measurement and modelling of ion binding by humic substances 2000. PhD Dissertation, University of Reading.

[67]  C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, E. Tipping, Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958.
Generic NICA-Donnan model parameters for metal-ion binding by humic substances.CrossRef | 1:CAS:528:DC%2BD3sXosVWgsQ%3D%3D&md5=7a79fef017f01ff26409f082104dfbfbCAS | 12666927PubMed | open url image1

[68]  S. Lofts, D. J. Spurgeon, C. Svendsen, E. Tipping, Deriving soil critical limits for Cu, Zn, Cd, and pH: a method based on free ion concentrations. Environ. Sci. Technol. 2004, 38, 3623.
Deriving soil critical limits for Cu, Zn, Cd, and pH: a method based on free ion concentrations.CrossRef | 1:CAS:528:DC%2BD2cXktlymurw%3D&md5=d39c91f2e2647a8cfcb98e42df6c4409CAS | 15296314PubMed | open url image1

[69]  A. E. Martell, R. D. Hancock, Metal Complexes in Aqueous Solutions 1996 (Kluwer: New York).



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (187 KB) Export Citation Cited By (130)