Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

A micro-sized model for the in vivo study of nanoparticle toxicity: what has Caenorhabditis elegans taught us?

Jinhee Choi A E , Olga V. Tsyusko B C E , Jason M. Unrine B C , Nivedita Chatterjee A , Jeong-Min Ahn A , Xinyu Yang C D , B. Lila Thornton C D , Ian T. Ryde C D , Daniel Starnes B C and Joel N. Meyer C D E
+ Author Affiliations
- Author Affiliations

A School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, South Korea.

B Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA.

C The Center for Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708, USA.

D Nicholas School of the Environment and Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708-0328, USA.

E Corresponding authors. Email: jinhchoi@uos.ac.kr; olga.tsyusko@uky.edu; jnm4@duke.edu




Dr Choi received her B.Sc. (1991) and Master's in Environmental Planning (1993) from Seoul National University and moved to France for study in graduate school. She earned a Ph.D. in Environmental Toxicology from University of Paris XI (Paris-Sud) in 1998 and then carried out her postdoctoral research at the College of Medicine of Seoul National University from 1999 to 2001. She serves as a professor of the School of Environmental Engineering at the University of Seoul from 2002. Her laboratory studies the mechanism of eco- and human toxicity of various environmental contaminants, including nanomaterials, using systems toxicology approaches.



Olga Tsyusko is Assistant Research Professor at the Department of Plant and Soil Sciences at the University of Kentucky. She received her B.Sc. in Biology from Uzhgorod National University in Ukraine and her Ph.D. in Toxicology at the University of Georgia in the United States. Her postdoctoral training was completed at the Savannah River Ecology Laboratory where she later worked as Molecular Biologist. The focus of her research is on environmental toxicogenomics, examining effects and toxicity mechanisms of engineered nanomaterials in soil invertebrates and plants. She is a member of the Center for Environmental Implications of NanoTechnology.



Jason M. Unrine is Assistant Professor in the Department of Plant and Soil Sciences at the University of Kentucky. Prior to this he served as a research scientist at the University of Georgia Savannah River Ecology Laboratory where he also undertook his doctoral and postdoctoral training in toxicology and environmental analytical chemistry. He earned his B.Sc. in Biology from Antioch College. His research focuses on understanding the fate, transport, bioavailability and adverse ecological effects of trace-elements and metal-based manufactured nanomaterials. He is a member of the steering committee of the Center for Environmental Implications of NanoTechnology (CEINT).



Dr Chatterjee received her B.Sc. (2001) and M.Sc. (2003) from University of Calcutta and moved to China to peruse her Ph.D. with the fellowship of India Government and Chinese scholarship council. She received her Ph.D. in Environmental Science (Environmental Toxicology) from China University of Geosciences, Wuhan, in 2009. Currently, she is a postdoctoral research fellow in Dr Choi's lab at the University of Seoul. She is engaged in the study of mechanisms of comparative (human and C. elegans) toxicity of environmental contaminants, specifically nanomaterials.



Ms J.-M. Ahn received her B.Sc. (2010) from University of Incheon and her M.Sc. (2013) from University of Seoul. For her M.Sc. she studied toxicity mechanisms of various nanomaterials in C. elegans. Since 2013, she has worked at the Risk Assessment Division in the Korean National Institute of Environmental Research.



Xinyu Yang received her Bachelors degree in Environmental Engineering from Shanghai Jiaotong University in July 2007, and then got her Master's degree in Zoology with Jim Oris from Miami University in July 2009. She received her Ph.D. in Environmental Toxicology from Duke University in 2014. Most of her Ph.D. work was focussed on the mechanistic toxicology of silver nanoparticles both in laboratory and environmental settings. She has published nine peer-reviewed journal articles in the field of environmental studies. With strong passion to apply her expertise in industrial settings, she currently joined Nalco-Ecolab as a regulatory specialist in Naperville, IL.



Lila Thornton graduated from Duke University in 2013 with Bachelor degrees in Biology and Environmental Science. She is currently an independent contractor for the US Environmental Protection Agency as part of the Chemical Safety for Sustainability National Research Program. Ms Thornton plans on pursuing a higher degree in the field of toxicology.



Ian Ryde received his Bachelor of Science in Biology from Bowling Green State University in Ohio in 2002 and then moved to the Raleigh–Durham area and started work in Dr Ted Slotkin's lab at Duke University in 2005. After 5 years in the Slotkin Lab, Ian moved on to Dr Joel Meyer's laboratory at Duke, where he has been for over 4 years now, working as a Laboratory Analyst II. He started working with the nematode C. elegans and on projects involving mitochondrial DNA damage and its effects on things such as mtDNA copy number, mRNA expression and neurodegeneration.



Daniel Starnes is a Ph.D. candidate in Integrated Plant and Soil Sciences within the Department of Plant and Soil Sciences at the University of Kentucky. He received his B.Sc. in Agriculture (2006) and M.Sc. in Biology (2009) from Western Kentucky University, where his research focussed on Environmental Phytoremediation and Phyto-Nanotechnology. His current research focuses on the environmental implications of manufactured nanoparticles on terrestrial ecosystems, specifically soil invertebrates.



Dr Meyer received his B.Sc. from Juniata College in 1992, and then moved to Guatemala where he worked in a number of fields including appropriate technology and high school teaching. He earned a Ph.D. in Environmental Toxicology from Duke University in 2003, carried out postdoctoral research with Dr Bennett Van Houten at NIEHS from 2003 to 2006, and joined the Nicholas School of the Environment at Duke University in 2007. His laboratory studies the effects of stressors on health, in particular studying the mechanisms by which environmental agents cause DNA damage and mitochondrial toxicity and the genetic differences that may alter sensitivity.

Environmental Chemistry 11(3) 227-246 https://doi.org/10.1071/EN13187
Submitted: 17 October 2013  Accepted: 16 April 2014   Published: 20 June 2014

Environmental context. The ability of the soil nematode Caenorhabditis elegans to withstand a wide range of environmental conditions makes it an idea model for studying the bioavailability and effects of engineered nanomaterials. We critically review what has been learned about the environmental fate of engineered nanoparticles, their effects and their mechanisms of toxicity using this model organism. Future systematic manipulation of nanoparticle properties and environmental variables should elucidate how their interaction influences toxicity and increase the predictive power of nanomaterial toxicity studies.

Abstract. Recent years have seen a rapid increase in studies of nanoparticle toxicity. These are intended both to reduce the chances of unexpected toxicity to humans or ecosystems, and to inform a predictive framework that would improve the ability to design nanoparticles that are less likely to cause toxicity. Nanotoxicology research has been carried out using a wide range of model systems, including microbes, cells in culture, invertebrates, vertebrates, plants and complex assemblages of species in microcosms and mesocosms. These systems offer different strengths and have also resulted in somewhat different conclusions regarding nanoparticle bioavailability and toxicity. We review the advantages offered by the model organism Caenorhabditis elegans, summarise what has been learned about uptake, distribution and effects of nanoparticles in this organism and compare and contrast these results with those obtained in other organisms, such as daphnids, earthworms, fish and mammalian models.

Additional keywords: bioavailability, gene expression, mechanism of toxicity, uptake.


References

[1]  M. R. Wiesner, G. V. Lowry, K. L. Jones, M. F. Hochella, R. T. Di Giulio, E. Casman, E. S. Bernhardt, Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009, 43, 6458.
Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFCiur0%3D&md5=0886f221938034ce9537d754f6700ef7CAS | 19764202PubMed |

[2]  K. D. Hristovski, P. K. Westerhoff, J. D. Posner, Octanol–water distribution of engineered nanomaterials. J. Environ. Sci. Health – A Tox. Hazard. Subst. Environ. Eng. 2011, 46, 636.
Octanol–water distribution of engineered nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVartbk%3D&md5=1b27ec31f6fbbb9c5c792db40bf7ba20CAS | 21547819PubMed |

[3]  F. von der Kammer, P. L. Ferguson, P. A. Holden, A. Masion, K. R. Rogers, S. J. Klaine, A. A. Koelmans, N. Horne, J. M. Unrine, Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32.
Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbfF&md5=2c389671872187661fdedaf142521bfcCAS | 22021021PubMed |

[4]  L. D. Lehman-McKeeman, Absorption, distribution, and excretion of toxicants, in Cassarett and Doull’s Toxicology: The Basis Science of Poisons (Ed. C. D. Klaassen) 2008, pp. 131–159 (McGraw-Hill Medical: New York).

[5]  M. Crosera, M. Bovenzi, G. Maina, G. Adami, C. Zanette, C. Florio, F. Filon Larese, Nanoparticle dermal absorption and toxicity: a review of the literature. Int. Arch. Occup. Environ. Health 2009, 82, 1043.
Nanoparticle dermal absorption and toxicity: a review of the literature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyqtLfL&md5=de756bf35795f6082625e23e18914339CAS | 19705142PubMed |

[6]  E. S. Bernhardt, B. P. Colman, M. F. Hochella, B. J. Cardinale, R. M. Nisbet, C. J. Richardson, L. Y. Yin, An ecological perspective on nanomaterial impacts in the environment. J. Environ. Qual. 2010, 39, 1954.
An ecological perspective on nanomaterial impacts in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKlu7zE&md5=97e9359d5cc2cc9604f8988bdcca9882CAS | 21284292PubMed |

[7]  W. A. Boyd, M. V. Smith, G. E. Kissling, J. H. Freedman, Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicol. Teratol. 2010, 32, 68.
Medium- and high-throughput screening of neurotoxicants using C. elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFGmtQ%3D%3D&md5=55824fb1de16f35c7c4827c810db6227CAS | 19166924PubMed |

[8]  T. I. Moy, A. L. Conery, J. Larkins-Ford, G. Wu, R. Mazitschek, G. Casadei, K. Lewis, A. E. Carpenter, F. M. Ausubel, High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem. Biol. 2009, 4, 527.
High-throughput screen for novel antimicrobials using a whole animal infection model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVCitLk%3D&md5=2ea550e2f0594dd0845c2d95e81ec868CAS | 19572548PubMed |

[9]  R. Damoiseaux, S. George, M. Li, S. Pokhrel, Z. Ji, B. France, T. Xia, E. Suarez, R. Rallo, L. Madler, Y. Cohen, E. M. V. Hoek, A. Nel, No time to lose-high throughput screening to assess nanomaterial safety. Nanoscale 2011, 3, 1345.
No time to lose-high throughput screening to assess nanomaterial safety.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2kurw%3D&md5=85cc00de1931fcbe48cbf30b3c1f94c2CAS | 21301704PubMed |

[10]  S. Brenner, The genetics of Caenorhabditis elegans. Genetics 1974, 11, 1.

[11]  The C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998, 282, 2012.
Genome sequence of the nematode C. elegans: a platform for investigating biology.Crossref | GoogleScholarGoogle Scholar | 9851916PubMed |

[12]  I. Antoshechkin, P. W. Sternberg, The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat. Rev. Genet. 2007, 8, 518.
The versatile worm: genetic and genomic resources for Caenorhabditis elegans research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1Skt7o%3D&md5=49b6499cc81a1962e5c124e087431ee0CAS | 17549065PubMed |

[13]  A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806.
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlCju74%3D&md5=75ed9511f665cc54f4f3cad19ed4ad10CAS | 9486653PubMed |

[14]  M. A. Félix, C. Braendle, The natural history of Caenorhabditis elegans. Curr. Biol. 2010, 20, R965.
The natural history of Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 21093785PubMed |

[15]  D. L. Riddle, P. S. Albert, Genetic and environmental regulation of dauer larva development, in C. elegans II (Eds T. Blumenthal, B. J. Meyer, J. R. Priess) 1997, pp. 739–768 (Cold Spring Harbor Laboratory Press: Plainview, NY).

[16]  W. A. Boyd, M. V. Smith, J. H. Freedman, Caenorhabditis elegans as a model in developmental toxicology. Methods Mol. Biol. 2012, 889, 15.
Caenorhabditis elegans as a model in developmental toxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGlsbbO&md5=ffde1b9f09621cfd423ad06f2f313376CAS | 22669657PubMed |

[17]  M. C. K. Leung, P. L. Williams, A. Benedetto, C. Au, K. J. Helmcke, M. Aschner, J. N. Meyer, Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol. Sci. 2008, 106, 5.
Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1emtLbK&md5=4ff44f6e6f6f08da80d3950a7e6b5b23CAS |

[18]  E. J. Martinez-Finley, M. Aschner, Revelations from the nematode Caenorhabditis elegans on the complex interplay of metal toxicological mechanisms. J. Toxicol. 2011, 2011, 895236.
Revelations from the nematode Caenorhabditis elegans on the complex interplay of metal toxicological mechanisms.Crossref | GoogleScholarGoogle Scholar | 21876692PubMed |

[19]  C. E. Steinberg, S. R. Sturzenbaum, R. Menzel, Genes and environment – striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci. Total Environ. 2008, 400, 142.
Genes and environment – striking the fine balance between sophisticated biomonitoring and true functional environmental genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yru7fF&md5=24bdbf07520f29902573432fc00f20deCAS | 18817948PubMed |

[20]  Y. Zhao, Q. Wu, Y. Li, D. Wang, Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Advances. 2013, 3, 5741.
Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVyitrg%3D&md5=03588764467ab2e5bc54d231e9e91bddCAS |

[21]  P. Williams, D. Dusenbery, Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol. Ind. Health 1988, 4, 469.
Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVGisLw%3D&md5=38b9491f2f7b90111391adeb755c5025CAS | 3188044PubMed |

[22]  P. L. Williams, D. B. Dusenbery, Aquatic toxicity testing using the nematode, Caenorhabditis elegans. Environ. Toxicol. Chem. 1990, 9, 1285.
Aquatic toxicity testing using the nematode, Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1Grtb4%3D&md5=95f67da81c4680d32aab2db72a25049bCAS |

[23]  W. A. Boyd, P. L. Williams, Comparison of the sensitivity of three nematode species to copper and their utility in aquatic and soil toxicity tests. Environ. Toxicol. Chem. 2003, 22, 2768.
Comparison of the sensitivity of three nematode species to copper and their utility in aquatic and soil toxicity tests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFOgsLc%3D&md5=a6c60d6e0b54434fc1737eec08570118CAS | 14587920PubMed |

[24]  S. Höss, S. Jansch, T. Moser, T. Junker, J. Rombke, Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism. Ecotoxicol. Environ. Saf. 2009, 72, 1811.
Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism.Crossref | GoogleScholarGoogle Scholar | 19665791PubMed |

[25]  R. Menzel, S. C. Swain, S. Hoess, E. Claus, S. Menzel, C. E. W. Steinberg, G. Reifferscheid, S. R. Sturzenbaum, Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 2009, 10, 160.
Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays.Crossref | GoogleScholarGoogle Scholar | 19366437PubMed |

[26]  W. Tyne, S. Lofts, D. J. Spurgeon, K. Jurkschat, C. Svendsen, A new medium for Caenorhabditis elegans toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions. Environ. Toxicol. Chem. 2013, 32, 1711.
A new medium for Caenorhabditis elegans toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOjsb%2FJ&md5=b27fea2bada66e3e906ae67cf12c9196CAS | 23595813PubMed |

[27]  W. A. Boyd, S. J. McBride, J. R. Rice, D. W. Snyder, J. H. Freedman, A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol. Appl. Pharmacol. 2010, 245, 153.
A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFeqt7w%3D&md5=48543dc0779f5e5b1f5cb1bef9511b3dCAS | 20206647PubMed |

[28]  J. Unrine, P. Bertsch, S. Hunyadi, Bioavailability, trophic transfer, and toxicity of manufactured metal and metal oxide nanoparticles in terrestrial environments. in Nanoscience and Nanotechnology: Environmental and Health Impacts (Ed. V. Grassian) 2008, pp. 345–366 (Wiley: Hoboken, NJ, USA).

[29]  D. G. Moerman, R. J. Barstead, Towards a mutation in every gene in Caenorhabditis elegans. Brief. Funct. Genomics Proteomics 2008, 7, 195.
Towards a mutation in every gene in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslKnu7s%3D&md5=fdfbce25521875337d58a0d0c4501b50CAS |

[30]  E. S. Han, F. L. Muller, V. I. Perez, W. Qi, H. Liang, L. Xi, C. Fu, E. Doyle, M. Hickey, J. Cornell, C. J. Epstein, L. J. Roberts, H. Van Remmen, A. Richardson, The in vivo gene expression signature of oxidative stress. Physiol. Genomics 2008, 34, 112.
The in vivo gene expression signature of oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1amsrs%3D&md5=ab60e713540499ed9b264ebfbd688e74CAS | 18445702PubMed |

[31]  R. S. Kamath, A. G. Fraser, Y. Dong, G. Poulin, R. Durbin, M. Gotta, A. Kanapin, N. Le Bot, S. Moreno, M. Sohrmann, D. P. Welchman, P. Zipperlen, J. Ahringer, Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421, 231.
Systematic functional analysis of the Caenorhabditis elegans genome using RNAi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsF2htg%3D%3D&md5=8f96bf88b55d3f58ad0d3037d7bf9085CAS | 12529635PubMed |

[32]  M. North, C. D. Vulpe, Functional toxicogenomics: mechanism-centered toxicology. Int. J. Mol. Sci. 2010, 11, 4796.
Functional toxicogenomics: mechanism-centered toxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFelu7%2FP&md5=aa531a632d8fd426c7a644b2a531eb85CAS | 21614174PubMed |

[33]  C. Anbalagan, I. Lafayette, M. Antoniou-Kourounioti, M. Haque, J. King, B. Johnsen, D. Baillie, C. Gutierrez, J. A. Martin, D. de Pomerai, Transgenic nematodes as biosensors for metal stress in soil pore water samples. Ecotoxicology 2012, 21, 439.
Transgenic nematodes as biosensors for metal stress in soil pore water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFamsbc%3D&md5=ddda6cf83baf10165947eb049ddb8569CAS | 22037694PubMed |

[34]  Y. Cui, S. McBride, W. Boyd, S. Alper, J. Freedman, Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol. 2007, 8, R122.
Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity.Crossref | GoogleScholarGoogle Scholar | 17592649PubMed |

[35]  H. Ma, T. C. Glenn, C. H. Jagoe, K. L. Jones, P. L. Williams, A transgenic strain of the nematode Caenorhabditis elegans as a biomonitor for heavy metal contamination. Environ. Toxicol. Chem. 2009, 28, 1311.
A transgenic strain of the nematode Caenorhabditis elegans as a biomonitor for heavy metal contamination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFWhtbw%3D&md5=b25719da5211bfd0b079205ea30f3d97CAS | 19175297PubMed |

[36]  E. A. Turner, G. L. Kroeger, M. C. Arnold, B. L. Thornton, R. T. Di Giulio, J. N. Meyer, Assessing different mechanisms of toxicity in mountaintop removal/valley fill coal mining-affected watershed samples using Caenorhabditis elegans. PLoS ONE 2013, 8, e75329.
Assessing different mechanisms of toxicity in mountaintop removal/valley fill coal mining-affected watershed samples using Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFWqsb7I&md5=062c59ec1cfb0bcc43206773649169a1CAS | 24066176PubMed |

[37]  H.-J. Eom, J.-M. Ahn, Y. Kim, J. Choi, Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans. Toxicol. Appl. Pharmacol. 2013, 270, 106.
Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlGgs7g%3D&md5=e0c68ce72748bcdcf1620978a632ccfeCAS | 23583631PubMed |

[38]  J.-y. Roh, S. J. Sim, J. Yi, K. Park, K. H. Chung, D.-y. Ryu, J. Choi, Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol. 2009, 43, 3933.
Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVSktLs%3D&md5=e233e9535dcd28e8b0395413a44ea842CAS | 19544910PubMed |

[39]  O. Tsyusko, J. M. Unrine, D. J. Spurgeon, E. M. Blalock, D. Starnes, M. T. Tseng, G. Joice, P. M. Bertsch, Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Environ. Sci. Technol. 2012, 46, 4115.
Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVWjtLc%3D&md5=dc07c3bc619ff634078af5db23dff4dbCAS | 22372763PubMed |

[40]  K. Donaldson, F. Murphy, A. Schinwald, R. Duffin, C. A. Poland, Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine 2011, 6, 143.
Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WntbbO&md5=2f4f9a12b9eda5564c0b07d5ecf754f7CAS | 21182425PubMed |

[41]  W. Shoults-Wilson, B. Reinsch, O. Tsyusko, P. Bertsch, G. Lowry, J. Unrine, Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci. Soc. Am. J. 2011, 75, 365.
Role of particle size and soil type in toxicity of silver nanoparticles to earthworms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFOlurY%3D&md5=e34fa31cb294534803b1b10143c51739CAS |

[42]  W. A. Shoults-Wilson, B. C. Reinsch, O. V. Tsyusko, P. M. Bertsch, G. V. Lowry, J. M. Unrine, Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 2011, 5, 432.
Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWgtbs%3D&md5=17bbf755b5ddd3b2714138f1bcde2982CAS | 21142839PubMed |

[43]  S. L. Hughes, J. G. Bundy, E. J. Want, P. Kille, S. R. Stürzenbaum, The metabolomic responses of Caenorhabditis elegans to cadmium are largely independent of metallothionein status, but dominated by changes in cystathionine and phytochelatins. J. Proteome Res. 2009, 8, 3512.
The metabolomic responses of Caenorhabditis elegans to cadmium are largely independent of metallothionein status, but dominated by changes in cystathionine and phytochelatins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntFCmu7Y%3D&md5=621b8cd480132d54310cffe86d987cf0CAS | 19466807PubMed |

[44]  M. C. K. Leung, J. V. Goldstone, W. A. Boyd, J. H. Freedman, J. N. Meyer, Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B 1 but not benzo a pyrene in vivo. Toxicol. Sci. 2010, 118, 444.
Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B 1 but not benzo a pyrene in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjsbjM&md5=5ad12fd5f08ac6ed6764c913a5f054cfCAS |

[45]  J. A. Powell-Coffman, C. A. Bradfield, W. B. Wood, Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc. Natl. Acad. Sci. USA 1998, 95, 2844.
Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitV2nu7w%3D&md5=ba52a367021eb72941d920c29b635b86CAS | 9501178PubMed |

[46]  J. Kim, T. Shirasawa, Y. Miyamoto, The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model. Biomaterials 2010, 31, 5849.
The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlKitL8%3D&md5=b879b7544f3d153dba6fb8370c9b7f52CAS | 20434216PubMed |

[47]  A. Kahru, H.-C. Dubourguier, From ecotoxicology to nanoecotoxicology. Toxicology 2010, 269, 105.
From ecotoxicology to nanoecotoxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslSit7g%3D&md5=8d85979f2277f878bcabc3ad74cd10a1CAS | 19732804PubMed |

[48]  J.-M. Ahn, H. J. Eom, X. Yang, J. N. Meyer, J. Choi, Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 2014, 108, 343.
Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVCgsrY%3D&md5=6b40c8f50f5a36742b3e05ca2074b644CAS | 24726479PubMed |

[49]  X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 2012, 46, 1119.
Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFygt7vN&md5=29f8517bdb955eb83c1aeb28945039f7CAS | 22148238PubMed |

[50]  M. Tejamaya, I. Römer, R. C. Merrifield, J. R. Lead, Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 2012, 46, 7011.
Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFGrsb8%3D&md5=507e8b4f722a1723b974cf4daeb07d8bCAS | 22432856PubMed |

[51]  O. V. Tsyusko, J. M. Unrine, P. M. Bertsch, Toxicity and transcriptomic responses of silver nanoparticles to Caenorhabditis elegans, in Proceedings ICOBTE 2011: 11th International Conference on Biogeochemistry of Trace Elements, 3–7 July 2011, Florence, Italy (Ed. K. Scheckel) 2011, S9-19 (International Society of Trace Element Biogeochemistry: Florence, Italy).

[52]  G. Oberdörster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit, H. Yang, Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2005, 2, 8.
Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy.Crossref | GoogleScholarGoogle Scholar | 16209704PubMed |

[53]  Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen-Dechent, Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941.
Size-dependent cytotoxicity of gold nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKqt7rP&md5=c2115bb3a935b5f7b1790363935f1efdCAS | 17963284PubMed |

[54]  M. V. Park, A. M. Neigh, J. P. Vermeulen, L. J. de la Fonteyne, H. W. Verharen, J. J. Briede, H. van Loveren, W. H. de Jong, The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32, 9810.
The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWlsbrL&md5=e78774030a9fa74659ed9a7e6c77e962CAS | 21944826PubMed |

[55]  H.-J. Eom, J. Choi, Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol. In Vitro 2009, 23, 1326.
Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wmsr7M&md5=440310ca33e31b6fe387da8671433448CAS | 19602432PubMed |

[56]  S. Hussain, K. Hess, J. Gearhart, K. Geiss, J. Schlager, In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005, 19, 975.
In vitro toxicity of nanoparticles in BRL 3A rat liver cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOhtLnE&md5=44433ef186c1d00004c8083373dfc2b2CAS | 16125895PubMed |

[57]  H. Yin, H. P. Too, G. M. Chow, The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 2005, 26, 5818.
The effects of particle size and surface coating on the cytotoxicity of nickel ferrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWitr4%3D&md5=05d98bd37e65919e70a407251d1836e4CAS | 15949547PubMed |

[58]  J. Y. Roh, Y. K. Park, K. Park, J. Choi, Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ. Toxicol. Pharmacol. 2010, 29, 167.
Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVKltrY%3D&md5=aa677a3edcdda6e146270f4dc9a9cfe9CAS | 21787599PubMed |

[59]  M. Auffan, J. Rose, J. Y. Bottero, G. V. Lowry, J. P. Jolivet, M. R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634.
Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1aqsLrE&md5=c9f91565b01cf0e9731b5deef0b8bbc8CAS | 19809453PubMed |

[60]  C. D. Klaassen, Casarett and Doull’s Toxicology. The Basic Science of Poisons 2007 (McGraw-Hill Health Professions Division: New York).

[61]  Y. Qu, W. Li, Y. Zhou, X. Liu, L. Zhang, L. Wang, Y.-f. Li, A. Iida, Z. Tang, Y. Zhao, Z. Chai, C. Chen, Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett. 2011, 11, 3174.
Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlGmsrc%3D&md5=97634d01161e1467292b0cf9b10ee3c0CAS | 21721562PubMed |

[62]  J. N. Meyer, C. A. Lord, X. Y. Yang, E. A. Turner, A. R. Badireddy, S. M. Marinakos, A. Chilkoti, M. R. Wiesner, M. Auffan, Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat. Toxicol. 2010, 100, 140.
Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGjs7bI&md5=40459a41abbeb56b27471610585121bdCAS | 20708279PubMed |

[63]  H. Ma, P. Bertsch, T. Glenn, N. Kabengi, P. Williams, Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 2009, 28, 1324.
Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFWhtbo%3D&md5=7cad1a7e567ad3cfd110d90471c56718CAS | 19192952PubMed |

[64]  J. Liu, R. H. Hurt, Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169.
Ion release kinetics and particle persistence in aqueous nano-silver colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Wqsrc%3D&md5=eda8eefb62b5e038312ad7a39ce5d935CAS | 20175529PubMed |

[65]  B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662.
Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVCjsLk%3D&md5=cc0479ae85e5b160362e877e6c545d91CAS | 16608261PubMed |

[66]  C. M. Goodman, C. D. McCusker, T. Yilmaz, V. M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 2004, 15, 897.
Toxicity of gold nanoparticles functionalized with cationic and anionic side chains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFelur4%3D&md5=ef7435cd5a2439922003af2b2824aa7aCAS | 15264879PubMed |

[67]  B. Collin, E. Oostveen, O. V. Tsyusko, J. M. Unrine, Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ. Sci. Technol. 2014, 48, 1280.
Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVWit7jM&md5=8c1499a5f6f1adcc23663062ec011b96CAS | 24372151PubMed |

[68]  S. W. Kim, S.-H. Nam, Y.-J. An, Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2012, 77, 64.
Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKgtb3M&md5=e4bb7b24ad4f6bb0b145d5ce675a55a3CAS | 22078113PubMed |

[69]  P. L. Williams, D. B. Dusenbery, Aquatic toxicity testing using the nematode, Caenorhabditis elegans. Environ. Toxicol. Chem. 1990, 9, 1285.
Aquatic toxicity testing using the nematode, Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1Grtb4%3D&md5=95f67da81c4680d32aab2db72a25049bCAS |

[70]  C. P. Cressman III, P. L. Williams, Reference Toxicants for toxicity testing using Caenorhabditis elegans in aquatic media, in Environmental Toxicology and Risk Assessment: Modeling and Risk Assessment (Eds F. J. Dwyer, T. R. Doane, M. L. Hinman) 1997, pp. 518–533 (American Society for Testing and Materials: West Conshohocken, PA, USA).

[71]  M. Freeman, C. Peredney, P. Williams, A soil bioassay using the nematode Caenorhabditis elegans, in Environmental Toxicology and RiskAssessment: Standardization of Biomarkers for Endocrine Disruption and Environmental Assessment (Eds D. S. Henshel, M. C. Black, M. C. Harrass) 2000, pp. 305–318. (American Society for Testing and Materials: West Conshohocken, PA, USA).

[72]  S. Höss, M. Haitzer, W. Traunspurger, C. E. W. Steinberg, Growth and fertility of Caenorhabditis elegans (Nematoda) in unpolluted freshwater sediments: response to particle size distribution and organic content. Environ. Toxicol. Chem. 1999, 18, 2921.
Growth and fertility of Caenorhabditis elegans (Nematoda) in unpolluted freshwater sediments: response to particle size distribution and organic content.Crossref | GoogleScholarGoogle Scholar |

[73]  C. L. Peredney, P. L. Williams, Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil. Arch. Environ. Contam. Toxicol. 2000, 39, 113.
| 1:CAS:528:DC%2BD3cXjvFCku70%3D&md5=10f51272a8ec2e3651f3680a6047fb02CAS | 10790509PubMed |

[74]  B. P. Lanphear, C. V. Vorhees, D. C. Bellinger, Protecting children from environmental toxins. PLoS Med. 2005, 2, e61.
Protecting children from environmental toxins.Crossref | GoogleScholarGoogle Scholar | 15783252PubMed |

[75]  A. Makri, M. Goveia, J. Balbus, R. Parkin, Children’s susceptibility to chemicals: a review by developmental stage. J. Toxicol. Environ. Health – B 2004, 7, 417.
Children’s susceptibility to chemicals: a review by developmental stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1Ojt70%3D&md5=28636f0686106eb953c1bbf55b14609fCAS |

[76]  J. M. McKim, Evaluation of tests with early life stages of fish for predicting long-term toxicity. Fish Res. Board Can. 1977, 34, 1148.
Evaluation of tests with early life stages of fish for predicting long-term toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlt1yhsr8%3D&md5=1e350b11e6fa82a931c65539862683c0CAS |

[77]  G. M. Rand, P. G. Wells, L. S. McCarthy, Fundamentals of aquatic toxicology effects, environmental fate, and risk assessment, in Introduction to Aquatic Toxicology 1995, pp. 3–70 (Taylor and Francis Publishers: North Palm Beach, FL, USA).

[78]  P. Khare, M. Sonane, R. Pandey, S. Ali, K. C. Gupta, A. Satish, Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. J. Biomed. Nanotech. 2011, 7, 116.
Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslCjsbY%3D&md5=5a216a2992c3eec7ccbed553c7504134CAS |

[79]  H. Wang, R. L. Wick, B. Xing, Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ. Pollut. 2009, 157, 1171.
Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1elurc%3D&md5=5b6aa914ce22a9eeff332ce8a22a5a0bCAS | 19081167PubMed |

[80]  X. Yang, C. Jiang, H. Hsu-Kim, A. R. Badireddy, M. Dykstra, M. R. Wiesner, D. E. Hinton, J. M. Meyer, Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ. Sci. Technol. 2014, 48, 3486.
Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtV2ru78%3D&md5=19361a8d5758e0fc0acf69382a4855d3CAS | 24568198PubMed |

[81]  L. Ellegaard-Jensen, K. A. Jensen, A. Johansen, Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2012, 80, 216.
Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1ymurY%3D&md5=b8f5d37c54904433df930236adeeee40CAS | 22475389PubMed |

[82]  N. Fielenbach, A. Antebi, C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 2008, 22, 2149.
C. elegans dauer formation and the molecular basis of plasticity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVehtrzE&md5=d6e742f3de87ba6714c7752c958ddcd3CAS | 18708575PubMed |

[83]  H. Ma, N. J. Kabengi, P. M. Bertsch, J. M. Unrine, T. C. Glenn, P. L. Williams, Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ. Pollut. 2011, 159, 1473.
Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFOqsbw%3D&md5=95c6210c383fd1592e7c22ccaf89dffaCAS | 21470728PubMed |

[84]  C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
Environmental transformations of silver nanoparticles: impact on stability and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGjt7o%3D&md5=4dae6e02caa0d9ab4a861e91882a1b9dCAS | 22339502PubMed |

[85]  C. Levard, E. M. Hotze, B. P. Colman, L. Truong, X. Yang, A. J. Bone, G. E. Brown, R. L. Tanguay, R. T. Di Giulio, E. S. Bernhardt, J. M. Meyer, M. R. Wiesner, Lowry GV, Sulfidation and chlorination of silver nanoparticles: natural antidotes to their ecotoxicity. Environ. Sci. Technol. 2013, 47, 13 440.
Sulfidation and chlorination of silver nanoparticles: natural antidotes to their ecotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWiu7zN&md5=f5e996e81c502e5ecef9c46100060a3dCAS |

[86]  S. Mahendra, H. Zhu, V. L. Colvin, P. J. Alvarez, Quantum dot weathering results in microbial toxicity. Environ. Sci. Technol. 2008, 42, 9424.
Quantum dot weathering results in microbial toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyisbnO&md5=9d58aa88b2ddbc50deaa1232fa1a638aCAS | 19174926PubMed |

[87]  A. Verma, O. Uzun, Y. Hu, Y. Hu, H.-S. Han, N. Watson, S. Chen, D. J. Irvine, F. Stellacci, Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 2008, 7, 588.
Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslKqsrg%3D&md5=2684d5bc0a9d6320acd09a2355a42c2fCAS | 18500347PubMed |

[88]  P. R. Leroueil, S. Hong, A. Mecke, J. R. Baker, B. G. Orr, M. M. B. Holl, Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc. Chem. Res. 2007, 40, 335.
Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVylsLw%3D&md5=a86f1b6218813bd9728b90328186e808CAS | 17474708PubMed |

[89]  B. D. Chithrani, W. C. W. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542.
Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslejsrw%3D&md5=dd4291b59e4779c3430dc8b0823e8adcCAS | 17465586PubMed |

[90]  N. W. S. Kam, Z. A. Liu, H. J. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 2006, 45, 577.
Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVequg%3D%3D&md5=0ad23a8811755c2020920865ddd4169aCAS |

[91]  G. D. Liu, Y. H. Lin, Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal. Chem. 2005, 77, 5894.
Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVOksLY%3D&md5=b7c8595e7ac0cdc5a4eeeb7cce419f5eCAS |

[92]  J. Rejman, V. Oberle, I. S. Zuhorn, D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004, 377, 159.
Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Wnsg%3D%3D&md5=5a9bdca331d05e61b88ebad1234ebf08CAS | 14505488PubMed |

[93]  B. L. Zhang, Y. Q. Li, C. Y. Fang, C. C. Chang, C. S. Chen, Y. Y. Chen, H. C. Chang, Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 2009, 5, 2716.
Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFektbzP&md5=dde920778114d6b07517ad5b4deb8006CAS |

[94]  W. Hild, K. Pollinger, A. Caporale, C. Cabrele, M. Keller, N. Pluym, A. Buschauer, R. Rachel, J. Tessmar, M. Breunig, A. Goepferich, G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake. Proc. Natl. Acad. Sci. USA 2010, 107, 10 667.
G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvV2it7o%3D&md5=80f40070c5b2004d7222d2705d497d9cCAS |

[95]  N. Armstrong, M. Ramamoorthy, D. Lyon, K. Jones, A. Duttaroy, Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS ONE 2013, 8, e53186.
Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFamurg%3D&md5=90f10acb191830ee0d53897752b79c9aCAS | 23308159PubMed |

[96]  A. P. Page, I. L. Johnstone, The cuticle, in WormBook: the Online Review of C. elegans Biology 2007, pp. 1–15 (WormBook Research Community: Pasadena, CA).

[97]  R. D. Handy, G. Cornelis, T. Fernandes, O. Tsyusko, A. Decho, T. Sabo-Attwood, C. Metcalfe, J. A. Steevens, S. J. Klaine, A. A. Koelmans, N. Horne, Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ. Toxicol. Chem. 2012, 31, 15.
Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbfE&md5=f552a5dff9140387a5ff7b612264b8a1CAS | 22002667PubMed |

[98]  K. V. Thomas, J. Farkas, E. Farmen, P. Christian, K. Langford, Q. L. Wu, K. E. Tollefsen, Effects of dispersed aggregates of carbon and titanium dioxide engineered nanoparticles on rainbow trout hepatocytes. J. Toxicol. Environ. Health A 2011, 74, 466.
Effects of dispersed aggregates of carbon and titanium dioxide engineered nanoparticles on rainbow trout hepatocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyhs74%3D&md5=2c7b339ec55d7ec300d2ca810a5c120eCAS | 21391092PubMed |

[99]  Y. J. Chae, C. H. Pham, J. Lee, E. Bae, J. Yi, M. B. Gu, Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat. Toxicol. 2009, 94, 320.
Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqt7bI&md5=87137ebcef5d277c78d54213f578bf05CAS | 19699002PubMed |

[100]  V. E. Fako, D. Y. Furgeson, Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv. Drug Deliv. Rev. 2009, 61, 478.
Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsF2js7g%3D&md5=9f8f93e3da6bacf9451b27d8c8106674CAS | 19389433PubMed |

[101]  S. Kashiwada, M. E. Ariza, T. Kawaguchi, Y. Nakagame, B. S. Jayasinghe, K. Gärtner, H. Nakamura, Y. Kagami, T. Sabo-Attwood, L. Ferguson, G. T. Chandler, Silver nano-colloids disrupt medaka embryogenesis through vital gene expressions. Environ. Sci. Technol. 2012, 46, 6278.
Silver nano-colloids disrupt medaka embryogenesis through vital gene expressions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmslyis7c%3D&md5=c2e690af3420010f7c8e6afb2b285c9dCAS | 22571164PubMed |

[102]  Y.-Y. Tsai, Y.-H. Huang, Y.-L. Chao, K.-Y. Hu, L.-T. Chin, S.-H. Chou, A.-L. Hour, Y.-D. Yao, C.-S. Tu, Y.-J. Liang, C.-Y. Tsai, H.-Y. Wu, S.-W. Tan, H.-M. Chen, Identification of the nanogold particle-induced endoplasmic reticulum stress by omic techniques and systems biology analysis. ACS Nano 2011, 5, 9354.
Identification of the nanogold particle-induced endoplasmic reticulum stress by omic techniques and systems biology analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSjsLvN&md5=2cc70a7ca9f64d294304b16eb7357d03CAS | 22107733PubMed |

[103]  O. V. Tsyusko, S. S. Hardas, W. A. Shoults-Wilson, C. P. Starnes, G. Joice, D. A. Butterfield, J. M. Unrine, Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida. Environ. Pollut. 2012, 171, 249.
Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSltLvK&md5=b381c26ac84f98ec4581ca4de43a368fCAS | 22960366PubMed |

[104]  Q. Ma, Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol. Ther. 2010, 125, 376.
Transcriptional responses to oxidative stress: pathological and toxicological implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Ogurc%3D&md5=c81683223ac28c5e7edaf14f5792e6c7CAS | 19945483PubMed |

[105]  J. J. Li, L. Zou, D. Hartono, C. N. Ong, B. H. Bay, L. Y. Lanry Yung, Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater. 2008, 20, 138.
Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Wgu7o%3D&md5=b39b7304f48debd6ff74582a35891c0fCAS |

[106]  L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, W. J. Stark, Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007, 41, 4158.
Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFSnsr8%3D&md5=bed257bff4f681a2f332bcea791c5d91CAS | 17612205PubMed |

[107]  L. Risom, P. Moller, S. Loft, Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res. – Fund. Mol. M. 2005, 592, 119.
Oxidative stress-induced DNA damage by particulate air pollution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OmsL%2FE&md5=bb465b55e0a726ea182ce6eb16a31b5dCAS |

[108]  A. Stroh, C. Zimmer, C. Gutzeit, M. Jakstadt, F. Marschinke, T. Jung, H. Pilgrimm, T. Grune, Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic. Biol. Med. 2004, 36, 976.
Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Wnsbw%3D&md5=9e1a424e807b716bdbb6f8c6d1d673a2CAS | 15059638PubMed |

[109]  D. Lim, J.-y. Roh, H.-j. Eom, J.-Y. Choi, J. Hyun, J. Choi, Oxidative stress-related pmk-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 2012, 31, 585.
Oxidative stress-related pmk-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVOjtL8%3D&md5=abed37523671de4a88b0296eec282505CAS | 22128035PubMed |

[110]  S. S. Hardas, D. A. Butterfield, R. Sultana, M. T. Tseng, M. Dan, R. L. Florence, J. M. Unrine, U. M. Graham, P. Wu, E. A. Grulke, R. A. Yokel, Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale ceria. Toxicol. Sci. 2010, 116, 562.
Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale ceria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVyktLs%3D&md5=93b71febb872c2898f45d4770c65a0deCAS | 20457660PubMed |

[111]  S. S. Hardas, R. Sultana, G. Warrier, M. Dan, R. L. Florence, P. Wu, E. A. Grulke, M. T. Tseng, J. M. Unrine, U. M. Graham, R. A. Yokel, D. A. Butterfield, Rat brain pro-oxidant effects of peripherally administered 5 nm ceria 30 days after exposure. Neurotoxicology 2012, 33, 1147.
Rat brain pro-oxidant effects of peripherally administered 5 nm ceria 30 days after exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSrtrnN&md5=ec02ccd2ec8f78ffa7d35572b808ce38CAS | 22750192PubMed |

[112]  M. T. Tseng, X. Lu, X. Duan, S. S. Hardas, R. Sultana, P. Wu, J. M. Unrine, U. Graham, D. A. Butterfield, E. A. Grulke, R. A. Yokel, Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicol. Appl. Pharmacol. 2012, 260, 173.
Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlOnur0%3D&md5=1244b4e23f242e6a426516b673f85841CAS | 22373796PubMed |

[113]  H. Zhang, X. He, Z. Zhang, P. Zhang, Y. Li, Y. Ma, Y. Kuang, Y. Zhao, Z. Chai, Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ. Sci. Technol. 2011, 45, 3725.
Nano-CeO2 exhibits adverse effects at environmental relevant concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVeisLc%3D&md5=7d55f2cb9a09cb64deb5322b3e7ebfc0CAS | 21428445PubMed |

[114]  N. Mohan, C. S. Chen, H. H. Hsieh, Y. C. Wu, H. C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10, 3692.
In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslSqu7g%3D&md5=d17b4f4e3ec21fe7b45ec9ebcc228354CAS | 20677785PubMed |

[115]  J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, C. H. Yan, Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials 2011, 32, 9059.
Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wmt7%2FK&md5=78dd3f9cef16402ceac5944050fb82a2CAS | 21880365PubMed |

[116]  T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner, A. E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6, 1794.
Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Ggu78%3D&md5=ae36b344ffc8cb7d3f825acec44dfc13CAS | 16895376PubMed |

[117]  R. T. Di Giulio, J. N. Meyer, Reactive oxygen species and oxidative stress, in Toxicology of Fishes (Eds R. T. Di Giulio, D. E. Hinton) 2008, pp. 273–324 (Taylor and Francis: London).

[118]  J. N. Meyer, M. C. K. Leung, J. P. Rooney, A. Sendoel, M. O. Hengartner, G. E. Kisby, A. S. Bess, Mitochondria as a target of environmental toxicants. Toxicol. Sci. 2013, 134, 1.
Mitochondria as a target of environmental toxicants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVakt7vE&md5=0477b1ffa99fb33ac91d9b04256f568bCAS | 23629515PubMed |

[119]  T. R. Pisanic, S. Jin, V. I. Shubayev, Iron oxide magnetic nanoparticle nanotoxicity: incidence and mechanisms, in Nanotoxicity: From in vivo and in vitro Models to Health Risks (Eds S. Sahu, D. Casciano) 2009, pp. 397–425 (Wiley: London).

[120]  S. J. Soenen, P. Rivera-Gil, J. M. Montenegro, W. J. Parak, S. C. De Smedt, K. Braeckmans, Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446.
Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOisbbN&md5=56f8388040a3d6cd8f5461f62b374518CAS |

[121]  F. Marano, S. Hussain, F. Rodrigues-Lima, A. Baeza-Squiban, S. Boland, Nanoparticles: molecular targets and cell signalling. Arch. Toxicol. 2011, 85, 733.
Nanoparticles: molecular targets and cell signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFWmsr8%3D&md5=fecf7d8399c2d9a9535d29abd1851b12CAS | 20502881PubMed |

[122]  A. Nel, T. Xia, N. Li, Toxic potential of materials at the nanolevel. Science 2006, 311, 622.
Toxic potential of materials at the nanolevel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVyrsg%3D%3D&md5=07607c278ce7f81713e9974590732786CAS | 16456071PubMed |

[123]  J. A. Coffman, A. Coluccio, A. Planchart, A. J. Robertson, Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2. Dev. Biol. 2009, 330, 123.
Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVaqtrs%3D&md5=3fa5a84b641d0cc3aa0d5ac7934e3dc3CAS | 19328778PubMed |

[124]  Y. Li, S. Yu, Q. Wu, M. Tang, Y. Pu, D. Wang, Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J. Hazard. Mater. 2012, 219–220, 221.
Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 22521136PubMed |

[125]  S. H. Yu, Q. Rui, T. Cai, Q. L. Wu, Y. X. Li, D. Y. Wang, Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al2O3-nanoparticle. Environ. Toxicol. Pharmacol. 2011, 32, 233.
Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al2O3-nanoparticle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVagtL3F&md5=c6bf960ece5fea5f4822710a83cce1d0CAS |

[126]  D. Lindholm, H. Wootz, L. Korhonen, ER stress and neurodegenerative diseases. Cell Death Differ. 2006, 13, 385.
ER stress and neurodegenerative diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtl2mt7o%3D&md5=818b581918a366686c8f2840aebb65cfCAS | 16397584PubMed |

[127]  A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. Hoek, P. Somarsundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543.
Understanding biophysicochemical interactions at the nano-bio interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFOqtL4%3D&md5=cafbec2a3fcb662f417ded0044d43f90CAS | 19525947PubMed |

[128]  E. Lai, T. Teodoro, A. Volchuk, Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 2007, 22, 193.
Endoplasmic reticulum stress: signaling the unfolded protein response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFOhs74%3D&md5=a542ec7eeca89a878921529f9480d940CAS | 17557940PubMed |

[129]  K. A. Haskins, J. F. Russell, N. Gaddis, H. K. Dressman, A. Aballay, Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity. Dev. Cell 2008, 15, 87.
Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVSgurg%3D&md5=be4c957f36457856f15c66a670ef9540CAS | 18606143PubMed |

[130]  N. Chatterjee, H. J. Eom, J. Choi, Effects of silver nanoparticles on oxidative DNA damage repair as a function of p38MAPK status: a comparative approach using human jurkat T cells and the nematode Caenorhabditis elegans. Environ. Mol. Mutagen. 2014, 55, 122.
Effects of silver nanoparticles on oxidative DNA damage repair as a function of p38MAPK status: a comparative approach using human jurkat T cells and the nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCjt77L&md5=a4f47aeb14b1cc67048e409ff4a8da44CAS | 24347047PubMed |

[131]  L. Stergiou, M. O. Hengartner, Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ. 2004, 11, 21.
Death and more: DNA damage response pathways in the nematode C. elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVKku7s%3D&md5=9f5292322ff8a3f4e6896cdd1fdaf07fCAS | 14685168PubMed |

[132]  B. Lant, W. B. Derry, Methods for detection and analysis of apoptosis signaling in the C. elegans germline. Methods 2013, 61, 174.
Methods for detection and analysis of apoptosis signaling in the C. elegans germline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFKms7k%3D&md5=ef83bde752d6d69d57d3583525ae2919CAS | 23643851PubMed |

[133]  Y. J. Cha, J. Lee, S. S. Choi, Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans. Chemosphere 2012, 87, 49.
Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit12hu7c%3D&md5=90442ab1d7497635f0054134c7b73353CAS | 22182706PubMed |

[134]  R. J. Griffitt, J. Luo, J. Gao, J.-C. Bonzongo, D. S. Barber, Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 2008, 27, 1972.
Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVersLbN&md5=f4c3fb7474a67b0740af9cf123d0971eCAS | 18690762PubMed |

[135]  C. Völker, C. Boedicker, J. Daubenthaler, M. Oetken, J. Oehlmann, Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments. PLoS ONE 2013, 8, e75026.
Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments.Crossref | GoogleScholarGoogle Scholar | 24116021PubMed |

[136]  M. C. Stensberg, R. Madangopal, G. Yale, Q. Wei, H. Ochoa-Acuña, A. Wei, E. S. Mclamore, J. Rickus, D. M. Porterfield, M. S. Sepúlveda, Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology 2014, 8, 833.
Silver nanoparticle-specific mitotoxicity in Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFemtbfK&md5=56413df14e273c49032d6886fd608ac2CAS | 23927462PubMed |

[137]  N. Adam, C. Schmitt, J. Galceran, E. Companys, A. Vakurov, R. Wallace, D. Knapen, R. Blust, The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. Nanotoxicology 2014, 8, 709.
| 1:CAS:528:DC%2BC3sXhvFemu73E&md5=2a4ab1ebc84ad97eb52f2798c91d0dedCAS | 23837602PubMed |

[138]  X. Zhu, L. Zhu, Y. Chen, S. Tian, Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J. Nanopart. Res. 2009, 11, 67.
Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSktg%3D%3D&md5=f1bd56e320695f4e1c0e770c9ecc9128CAS |

[139]  D. A. Arndt, J. Chen, M. Moua, R. D. Klaper, Multigeneration impacts on Daphnia magna of carbon nanomaterials with differing core structures and functionalizations. Environ. Toxicol. Chem. 2014, 33, 541.
Multigeneration impacts on Daphnia magna of carbon nanomaterials with differing core structures and functionalizations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisV2lsrw%3D&md5=a543809ae7de8f252652699c4fe8be24CAS | 24442719PubMed |

[140]  H. C. Poynton, J. M. Lazorchak, C. A. Impellitteri, B. J. Blalock, K. Rogers, H. J. Allen, A. Loguinov, J. L. Heckman, S. Govindasmawy, Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles. Environ. Sci. Technol. 2012, 46, 6288.
Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1eqsbY%3D&md5=d1785afb9efb84090e20fe85729aea34CAS | 22545559PubMed |

[141]  J. K. Colbourne, M. E. Pfrender, D. Gilbert, W. K. Thomas, A. Tucker, T. H. Oakley, S. Tokishita, A. Aerts, G. J. Arnold, M. K. Basu, D. J. Bauer, C. E. Cáceres, L. Carmel, C. Casola, J.-H. Choi, J. C. Detter, Q. Dong, S. Dusheyko, B. D. Eads, T. Fröhlich, K. A. Geiler-Samerotte, D. Gerlach, P. Hatcher, S. Jogdeo, J. Krijgsveld, E. V. Kriventseva, D. Kültz, C. Laforsch, E. Lindquist, J. Lopez, J. R. Manak, J. Muller, J. Pangilinan, R. P. Patwardhan, S. Pitluck, E. J. Pritham, A. Rechtsteiner, M. Rho, I. B. Rogozin, O. Sakarya, A. Salamov, S. Schaack, H. Shapiro, Y. Shiga, C. Skalitzky, Z. Smith, A. Souvorov, W. Sung, Z. Tang, D. Tsuchiya, H. Tu, H. Vos, M. Wang, Y. I. Wolf, H. Yamagata, T. Yamada, Y. Ye, J. R. Shaw, J. Andrews, T. J. Crease, H. Tang, S. M. Lucas, H. M. Robertson, P. Bork, E. V. Koonin, E. M. Zdobnov, I. V. Grigoriev, M. Lynch, J. L. Boore, The ecoresponsive genome of Daphnia pulex. Science 2011, 331, 555.
The ecoresponsive genome of Daphnia pulex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWisbY%3D&md5=dd3f60d5cf8935f0e171b2bc3baefcb4CAS | 21292972PubMed |

[142]  X. Zhu, J. Wang, X. Zhang, Y. Chang, Y. Chen, Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 2010, 79, 928.
Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFCht78%3D&md5=556c4616bb7dc869d191b4d062e61c3aCAS | 20371096PubMed |

[143]  J. M. Unrine, S. E. Hunyadi, O. V. Tsyusko, W. Rao, W. A. Shoults-Wilson, P. M. Bertsch, Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ. Sci. Technol. 2010, 44, 8308.
Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ajtrvJ&md5=d8f46bbb2ee2b8a8521260c36e5520cdCAS | 20879765PubMed |

[144]  C. Coutris, T. Hertel-Aas, E. Lapied, E. J. Joner, D. H. Oughton, Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 2012, 6, 186.
Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2ntrc%3D&md5=d540612701da40d9cd17aa5d800de467CAS | 21486186PubMed |

[145]  W. A. Shoults-Wilson, O. I. Zhurbich, D. H. McNear, O. V. Tsyusko, P. M. Bertsch, J. M. Unrine, Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 2011, 20, 385.
Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVWqurY%3D&md5=1d2549507a7341cc8802aca4093f432bCAS | 21229389PubMed |

[146]  P. V. AshaRani, G. L. K. Mun, M. P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279.
Cytotoxicity and genotoxicity of silver nanoparticles in human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotA%3D%3D&md5=cee9e0f668f76ae666035058a52e7444CAS | 19236062PubMed |

[147]  C. M. Ho, S. K. Yau, C. N. Lok, M. H. So, C. M. Che, Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem. Asian J. 2010, 5, 285.
Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGqsLY%3D&md5=9f8694e62338e431765a66c0ca056615CAS | 20063340PubMed |

[148]  X. Zhu, L. Zhu, Y. Li, Z. Duan, W. Chen, P. J. J. Alvarez, Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem. 2007, 26, 976.
Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1OnsL8%3D&md5=cad79aac803926c111517b712ed56268CAS | 17521145PubMed |

[149]  X. Zhu, L. Zhu, Z. Duan, R. Qi, Y. Li, Y. Lang, Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2008, 43, 278.
Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1ehsA%3D%3D&md5=205e032ff15c3f79d50e6a8c24080682CAS |

[150]  J. Cheng, E. Flahaut, S. H. Cheng, Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ. Toxicol. Chem. 2007, 26, 708.
Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Cnu7s%3D&md5=cb1f12dc83ebee677ae1a299fad2c7deCAS | 17447555PubMed |

[151]  K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, X.-H. N. Xu, In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007, 1, 133.
In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSnsL%2FF&md5=616c585701371085f8c3a940a3ea9749CAS | 19122772PubMed |

[152]  A. Pluskota, E. Horzowski, O. Bossinger, A. von Mikecz, In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS ONE 2009, 4, e6622.
In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence.Crossref | GoogleScholarGoogle Scholar | 19672302PubMed |

[153]  H.-J. Eom, J. Choi, p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in jurkat T cells. Environ. Sci. Technol. 2010, 44, 8337.
p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in jurkat T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gqt7zK&md5=17280a4c509e8117d7e84e8db7faa361CAS | 20932003PubMed |

[154]  R. Zhang, M. J. Piao, K. C. Kim, A. D. Kim, J.-Y. Choi, J. Choi, J. W. Hyun, Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis. Int. J. Biochem. Cell B. 2012, 44, 224.
Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CrsbvN&md5=f252553e034d14a787872a6e588331b0CAS |

[155]  J. Kim, M. Takahashi, T. Shimizu, T. Shirasawa, M. Kajita, A. Kanayama, Y. Miyamoto, Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech. Ageing Dev. 2008, 129, 322.
Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVSgtLo%3D&md5=739a1cff02e40eef1011d0c29ce6b156CAS | 18400258PubMed |

[156]  Y. Sakaue, J. Kim, Y. Miyamoto, Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient Caenorhabditis elegans, nuo-1. Int. J. Nanomed. 2010, 5, 687.
| 1:CAS:528:DC%2BC3cXht1SksL%2FF&md5=0182ded4d8211991b5bfea269bf3c630CAS |

[157]  H. X. Yan, T. Kinjo, H. Z. Tian, T. Hamasaki, K. Teruya, S. Kabayama, S. Shirahata, Mechanism of the lifespan extension of Caenorhabditis elegans by electrolyzed reduced water-participation of Pt nanoparticles. Biosci. Biotechnol. Biochem. 2011, 75, 1295.
Mechanism of the lifespan extension of Caenorhabditis elegans by electrolyzed reduced water-participation of Pt nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFertrs%3D&md5=fd5d64b8b631b34ecb1e879f97ec5deeCAS |

[158]  Q. Rui, Y. Zhao, Q. Wu, M. Tang, D. Wang, Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere 2013, 93, 2289.
Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGrtbfN&md5=9e35f6002d7851f8d8f2397945fbb55fCAS | 24001673PubMed |

[159]  M. C. Arnold, A. R. Badireddy, M. R. Wiesner, R. T. Di Giulio, J. N. Meyer, Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch. Environ. Contam. Toxicol. 2013, 65, 224.
Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2rs7bK&md5=3d21fad33187aa4143fb800727fe3fd7CAS | 23619766PubMed |

[160]  S. Wu, J. H. Lu, Q. Rui, S. H. Yu, T. Cai, D. Y. Wang, Aluminum nanoparticle exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes. Environ. Toxicol. Pharmacol. 2011, 31, 179.
Aluminum nanoparticle exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2mtbjJ&md5=b6e4d56a365baf41780e0ee0dfc4c7e9CAS | 21787684PubMed |

[161]  Q. Wu, Y. Li, M. Tang, D. Wang, Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans. PLoS ONE 2012, 7, e43729.
Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Cnsb7N&md5=6730c0d7d2de15875f404fa346acccb6CAS | 22912902PubMed |

[162]  P. R. Hunt, B. J. Marquis, K. M. Tyner, S. Conklin, N. Olejnik, B. C. Nelson, R. L. Sprando, Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. Journal of applied toxicology. J. Appl. Toxicol. 2013, 33, 1131.
Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. Journal of applied toxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVWjsLo%3D&md5=2fbd119cbb996ada26b9798319ec8370CAS | 23636779PubMed |

[163]  B. R. Daniels, B. C. Masi, D. Wirtz, Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys. J. 2006, 90, 4712.
Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVakt74%3D&md5=4c7b6d28acc3aa9d11c6c7fad272e866CAS | 16581841PubMed |

[164]  E. Zanni, G. De Bellis, M. P. Bracciale, A. Broggi, M. L. Santarelli, M. S. Sarto, C. Palleschi, D. Uccelletti, Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model. Nano Lett. 2012, 12, 2740.
Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlOhu7s%3D&md5=695e617fe2b1aac3eb5d6f6292786726CAS | 22612766PubMed |

[165]  P.-C. L. Hsu, M. O’Callaghan, N. Al-Salim, M. R. H. Hurst, Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. Environ. Toxicol. Chem. 2012, 31, 2366.
Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Khtb%2FI&md5=b365f78864d64643f9c8d148ba9d332aCAS |

[166]  E. Q. Contreras, M. Cho, H. Zhu, H. L. Puppala, G. Escalera, W. Zhong, V. L. Colvin, Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure. Environ. Sci. Technol. 2013, 47, 1148.
Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVaktbrO&md5=d23523c61af5500a5c13002a80f61148CAS | 23241207PubMed |

[167]  Q. L. Wu, W. Wang, Y. X. Li, Y. P. Li, B. P. Ye, M. Tang, D. Y. Wang, Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. J. Hazard. Mater. 2012, 243, 161.
Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Wnu7jF&md5=e940514d8bf703103a39c2d140dca3c3CAS |

[168]  Q. L. Wu, A. Nouara, Y. P. Li, M. Zhang, W. Wang, M. Tang, B. P. Ye, J. D. Ding, D. Y. Wang, Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 2013, 90, 1123.
Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyhtr3E&md5=a9795c940d748661a96a7a2fd57bd942CAS |

[169]  Y. Zhao, Q. Wu, M. Tang, D. Wang, The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomedicine 2014, 10, 89.
The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlahtbnI&md5=dc2f78a2428f85aa9328aa6d3bb3ca68CAS | 23891985PubMed |

[170]  Y. X. Li, W. Wang, Q. L. Wu, Y. P. Li, M. Tang, B. P. Ye, D. Y. Wang, Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS ONE 2012, 7, e44688.
Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlahtLzN&md5=2f162e75351a3433fea315875075b473CAS |

[171]  P. H. Chen, K. M. Hsiao, C. C. Chou, Molecular characterization of toxicity mechanism of single-walled carbon nanotubes. Biomaterials 2013, 34, 5661.
Molecular characterization of toxicity mechanism of single-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Kru74%3D&md5=83d04c97efaed0b009c997813fb80c80CAS | 23623425PubMed |

[172]  Q. Wu, Y. Li, Y. Li, Y. Zhao, L. Ge, H. Wang, D. Wang, Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode Caenorhabditis elegans. Nanoscale 2013, 5, 11 166.
Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OrsLfL&md5=2e6784c8a0c07ad3f458d9c6e8b906cfCAS |

[173]  R. T. Minullina, Y. N. Osin, D. G. Ishmuchametova, R. F. Fakhrullin, Interfacing multicellular organisms with polyelectrolyte shells and nanoparticles: a Caenorhabtidis elegans study. Langmuir 2011, 27, 7708.
Interfacing multicellular organisms with polyelectrolyte shells and nanoparticles: a Caenorhabtidis elegans study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFShsro%3D&md5=64196c7b74295c2a895210718e37999aCAS | 21591632PubMed |

[174]  S. W. Kim, J. I. Kwak, Y.-J. An, Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure. Environ. Sci. Technol. 2013, 47, 5393.
Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVWksrY%3D&md5=dd1b3533cc24521b8d0df94394b04c9eCAS | 23590387PubMed |