Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Deciphering and predicting spatial and temporal concentrations of arsenic within the Mekong Delta aquifer

Benjamin D. Kocar A , Shawn G. Benner B and Scott Fendorf C D
+ Author Affiliations
- Author Affiliations

A Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

B Department of Geosciences, 1910 University Drive, Boise State University, Boise, ID 83725, USA.

C Department of Environmental & Earth System Science, Stanford University, Stanford, CA 94305, USA.

D Corresponding author. Email: Fendorf@stanford.edu

Environmental Chemistry 11(5) 579-594 https://doi.org/10.1071/EN13244
Submitted: 31 December 2013  Accepted: 10 June 2014   Published: 25 September 2014

Environmental context. Himalayan derived arsenic contaminates groundwater across Asia, ranging from the deltas of Ganges-Brahmaputra of Bangladesh to the interior basins of the Yangtze and Yellow Rivers in China, where more than one hundred million people are drinking water with hazardous levels of the toxin. Our ability to predict the distribution and changes in arsenic concentration in aquifers of affected regions has been limited. Here we provide a dynamic model that captures arsenic migration and can be used to forecast changes in groundwater arsenic concentrations.

Abstract. Unravelling the complex, coupled processes responsible for the spatial distribution of arsenic within groundwaters of South and South-East Asia remains challenging, limiting the ability to predict the subsurface spatial distribution of arsenic. Previous work illustrates that Himalayan-derived, near-surface (0 to 12 m) sediments contribute a substantial quantity of arsenic to groundwater, and that desorption from the soils and sediments is driven by the reduction of AsV and arsenic-bearing iron (hydr)oxides. However, the complexities of groundwater flow will ultimately dictate the distribution of arsenic within the aquifer, and these patterns will be influenced by inherent physical heterogeneity along with human alterations of the aquifer system. Accordingly, we present a unified biogeochemical and hydrologic description of arsenic release to the subsurface environment of an arsenic-afflicted aquifer in the Mekong Delta, Kandal Province, Cambodia, constructed from measured geochemical profiles and hydrologic parameters. Based on these measurements, we developed a simple yet dynamic reactive transport model to simulate one- and two-dimensional geochemical profiles of the near surface and aquifer environment to examine the effects of subsurface physical variation on the distribution of arsenic. Our results show that near-surface release (0–12 m) contributes enough arsenic to the aquifer to account for observed field values and that the spatial distribution of arsenic within the aquifer is strongly affected by variations in biogeochemical and physical parameters. Furthermore, infiltrating dissolved organic carbon and ample buried particulate organic carbon ensures arsenic release from iron (hydr)oxides will occur for hundreds to thousands of years.


References

[1]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=e91f95bcfc6b5336d0e64af1fca2a6c1CAS |

[2]  A. Mukherjee, M. K. Sengupta, M. A. Hossain, S. Ahamed, B. Das, B. Nayak, D. Lodh, M. M. Rahman, D. Chakraborti, Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J. Health Popul. Nutr. 2006, 24, 142.
| 17195556PubMed |

[3]  L. Charlet, D. A. Polya, Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements. 2006, 2, 91.
Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster.Crossref | GoogleScholarGoogle Scholar |

[4]  L. R. Lado, D. Polya, L. Winkel, M. Berg, A. Hegan, Modelling arsenic hazard in Cambodia: a geostatistical approach using ancillary data. Appl. Geochem. 2008, 23, 3010.
Modelling arsenic hazard in Cambodia: a geostatistical approach using ancillary data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurzL&md5=e04ff8e753dd450babff798613473b29CAS |

[5]  R. B. Neumann, K. N. Ashfaque, A. B. M. Badruzzaman, M. A. Ali, J. K. Shoemaker, C. F. Harvey, Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat. Geosci. 2010, 3, 46.
Anthropogenic influences on groundwater arsenic concentrations in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Slu7zO&md5=96189f8d33ec0909d46ed5c5ec0edc43CAS |

[6]  B. D. Kocar, M. L. Polizzotto, S. G. Benner, S. C. Ying, M. Ung, K. Ouch, S. Samreth, B. Suy, K. Phan, M. Sampson, S. Fendorf, Integrated biogeochemical and hydrologic processes driving arsenic release from shallow sediments to groundwaters of the Mekong delta. Appl. Geochem. 2008, 23, 3059.
Integrated biogeochemical and hydrologic processes driving arsenic release from shallow sediments to groundwaters of the Mekong delta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkur3N&md5=395e5c790508241f80fea8ad9a1be50eCAS |

[7]  S. G. Benner, M. L. Polizzotto, B. D. Kocar, S. Ganguly, K. Phan, K. Ouch, M. Sampson, S. Fendorf, Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia. Appl. Geochem. 2008, 23, 3072.
Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkur3O&md5=316565484d5f9d456cac28a0cf34c871CAS |

[8]  C. F. Harvey, C. H. Swartz, A. B. M. Badruzzaman, N. Keon-Blute, W. Yu, M. A. Ali, J. Jay, R. Beckie, V. Niedan, D. Brabander, P. M. Oates, K. N. Ashfaque, S. Islam, H. F. Hemond, M. F. Ahmed, Arsenic mobility and groundwater extraction in Bangladesh. Science 2002, 298, 1602.
Arsenic mobility and groundwater extraction in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xosl2ktb0%3D&md5=15bf4a1b66c8fa3cada9b42a1c6cdd03CAS | 12446905PubMed |

[9]  M. Stute, Y. Zheng, P. Schlosser, A. Horneman, R. K. Dhar, S. Datta, M. A. Hoque, A. A. Seddique, M. Shamsudduha, K. M. Ahmed, A. van Geen, Hydrological control of As concentrations in Bangladesh groundwater. Water Resour. Res. 2007, 43, W09417.
Hydrological control of As concentrations in Bangladesh groundwater.Crossref | GoogleScholarGoogle Scholar |

[10]  M. L. Polizzotto, B. D. Kocar, S. G. Benner, M. Sampson, S. Fendorf, Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 2008, 454, 505.
Near-surface wetland sediments as a source of arsenic release to ground water in Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovV2mtLs%3D&md5=c6b5cb4d41410848c3e8658837b86453CAS | 18650922PubMed |

[11]  C. F. Harvey, K. N. Ashfaque, W. Yu, A. B. M. Badruzzaman, M. A. Ali, P. M. Oates, H. A. Michael, R. B. Neumann, R. Beckie, S. Islam, M. F. Ahmed, Groundwater dynamics and arsenic contamination in Bangladesh. Chem. Geol. 2006, 228, 112.
Groundwater dynamics and arsenic contamination in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFehs7o%3D&md5=cb4457427c14d768bb3c35c8c8fdecdaCAS |

[12]  J. M. McArthur, P. Ravenscroft, S. Safiulla, M. F. Thirlwall, Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 2001, 37, 109.
Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlensA%3D%3D&md5=6a743f4920fd12992eab5fba992ffd7cCAS |

[13]  J. M. McArthur, D. M. Banerjee, K. A. Hudson-Edwards, R. Mishra, R. Purohit, P. Ravenscroft, A. Cronin, R. J. Howarth, A. Chatterjee, T. Talukder, D. Lowry, S. Houghton, D. K. Chadha, Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl. Geochem. 2004, 19, 1255.
Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1WksL0%3D&md5=1c30e71d154a3c6b92091a7ffa71db05CAS |

[14]  D. Postma, F. Larsen, N. T. Thai, P. T. K. Trang, R. Jakobsen, P. Q. Nhan, T. V. Long, P. H. Viet, A. S. Murray, Groundwater arsenic concentrations in Vietnam controlled by sediment age. Nat. Geosci. 2012, 5, 656.
Groundwater arsenic concentrations in Vietnam controlled by sediment age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCgs7jP&md5=915a0d7d1be7a1bfebf707119fc9c80bCAS |

[15]  D. Postma, F. Larsen, N. T. M. Hue, M. T. Duc, P. H. Viet, P. Q. Nhan, S. Jessen, Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim. Cosmochim. Acta 2007, 71, 5054.
Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Gis7jP&md5=7e79166c6904be3bbb81f824e1d7d794CAS |

[16]  A. Mukherjee, A. E. Fryar, P. D. Howell, Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrogeol. J. 2007, 15, 1397.
Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCrsbjN&md5=f1c175650ea35f0715107ca9b4694fb5CAS |

[17]  W. G. Burgess, M. A. Hoque, H. A. Michael, C. I. Voss, G. N. Breit, K. M. Ahmed, Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic. Nat. Geosci. 2010, 3, 83.
Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KrsL0%3D&md5=b5a7e19ea3b05d0bed26f05aaa178d2fCAS |

[18]  H. A. Michael, C. I. Voss, Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeol. J. 2009, 17, 1561.
Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSlt7zJ&md5=a929562cee9e5df42bb7ba8e77c5c54fCAS |

[19]  L. H. E. Winkel, T. K. T. Pham, M. L. Vi, C. Stengel, M. Amini, T. H. Nguyen, H. V. Pham, M. Berg, Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc. Natl. Acad. Sci. USA 2011, 108, 1246.
Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2it7s%3D&md5=c37cf2f82fca39a28a52c3ab7bfada52CAS |

[20]  V. Lap Nguyen, T. K. O. Ta, M. Tateishi, Late Holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam. J. Asian Earth Sci. 2000, 18, 427.
Late Holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam.Crossref | GoogleScholarGoogle Scholar |

[21]  T. K. O. Ta, V. Lap Nguyen, M. Tateishi, I. Kobayashi, S. Tanabe, Y. Saito, Holocene delta evolution and sediment discharge of the Mekong River southern Vietnam. Quat. Sci. Rev. 2002, 21, 1807.
Holocene delta evolution and sediment discharge of the Mekong River southern Vietnam.Crossref | GoogleScholarGoogle Scholar |

[22]  T. Tamura, Y. Saito, S. Sieng, B. Ben, M. Kong, S. Choup, S. Tsukawaki, Depositional facies and radiocarbon ages of a drill core from the Mekong River lowland near Phnom Penh, Cambodia: evidence for tidal sedimentation at the time of Holocene maximum flooding. J. Asian Earth Sci. 2007, 29, 585.
Depositional facies and radiocarbon ages of a drill core from the Mekong River lowland near Phnom Penh, Cambodia: evidence for tidal sedimentation at the time of Holocene maximum flooding.Crossref | GoogleScholarGoogle Scholar |

[23]  B. D. Kocar, Soil-sediment processes perpetuating history’s largest mass poisoning through release of arsenic to Asian groundwaters 2008, Ph.D. Thesis, Stanford University, Stanford.

[24]  R. M. Cornell, U. Schwertmann, The Iron Oxides 2003 (Wiley-VCH: Druckhaus Darmstadt).

[25]  S. Chakraborty, M. Wolthers, D. Chatterjee, L. Charlet, Adsorption of arsenite and arsenate onto muscovite and biotite mica. J. Colloid Interface Sci. 2007, 309, 392.
Adsorption of arsenite and arsenate onto muscovite and biotite mica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOksrc%3D&md5=82a09cd30624d0d7757bae8e8c2969bcCAS | 17292378PubMed |

[26]  R. S. Oremland, J. F. Stolz, The ecology of arsenic. Science 2003, 300, 939.
The ecology of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyjsLs%3D&md5=840e38f53bf5d9201af72c47691ceb50CAS | 12738852PubMed |

[27]  R. Nickson, J. McArthur, W. Burgess, K. M. Ahmed, P. Ravenscroft, M. Rahman, Arsenic poisoning of Bangladesh groundwater. Nature 1998, 395, 338.
Arsenic poisoning of Bangladesh groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVSrsLk%3D&md5=ad12f46504a973b1dce705ab23a8b89bCAS | 9759723PubMed |

[28]  K. J. Tufano, S. Fendorf, Confounding impacts of iron reduction on arsenic retention. Environ. Sci. Technol. 2008, 42, 4777.
Confounding impacts of iron reduction on arsenic retention.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVeks7s%3D&md5=884cb328c44d0b33e04fe8f88df87cbbCAS | 18678005PubMed |

[29]  B. D. Kocar, M. J. Herbel, K. J. Tufano, S. Fendorf, Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport. Environ. Sci. Technol. 2006, 40, 6715.
Contrasting effects of dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVaqs7vE&md5=7a7fa4d48a6303e849e48b66035a5dabCAS | 17144301PubMed |

[30]  B. D. Kocar, S. Fendorf, Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments. Environ. Sci. Technol. 2009, 43, 4871.
Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFaktLo%3D&md5=a856a9b30a972537ff629f30b93de87dCAS | 19673278PubMed |

[31]  D. Postma, R. Jakobsen, Redox zonation: equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim. Cosmochim. Acta 1996, 60, 3169.
Redox zonation: equilibrium constraints on the Fe(III)/SO4-reduction interface.Crossref | GoogleScholarGoogle Scholar |

[32]  D. Postma, S. Jessen, T. M. H. Nguyen, T. D. Mai, C. B. Koch, H. V. Pham, Q. N. Pham, F. Larsen, Mobilization of arsenic and iron from Red River floodplain sediments. Vietnam. Geochim. Cosmochim. Acta 2010, 74, 3367.

[33]  K. U. Mayer, E. O. Frind, D. W. Blowes, Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 2002, 38, 1174.
Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions.Crossref | GoogleScholarGoogle Scholar |

[34]  K. U. Mayer, S. G. Benner, E. O. Frind, S. F. Thornton, D. N. Lerner, Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolc compounds in a deep sandstone aquifer. J. Contam. Hydrol. 2001, 53, 341.
Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolc compounds in a deep sandstone aquifer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFCmt7c%3D&md5=e6c51c338e8ba4afcc489f66fb2ead77CAS | 11820477PubMed |

[35]  K. J. Tufano, S. G. Benner, K. U. Mayer, M. A. Marcus, P. S. Nico, S. Fendorf, Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations. Vadose Zone J. 2009, 8, 1004.
Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFamu7g%3D&md5=63c28c7f81678f6f44e6fd485a368c79CAS |

[36]  K. U. Mayer, S. G. Benner, D. W. Blowes, Process-based reactive transport modeling of a permeable reactive barrier for the treatment of mine drainage. J. Contam. Hydrol. 2006, 85, 195.
Process-based reactive transport modeling of a permeable reactive barrier for the treatment of mine drainage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktlaqs7s%3D&md5=1b96e75b3f391eb5ab93f72a888b42b3CAS | 16554107PubMed |

[37]  J. M. Melillo, J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, K. J. Nadelhoffer, Carbon and nitrogen dynamics along the decay continuum – plant litter to soil organic-matter. Plant Soil 1989, 115, 189.
Carbon and nitrogen dynamics along the decay continuum – plant litter to soil organic-matter.Crossref | GoogleScholarGoogle Scholar |

[38]  D. Postma, Pyrite and siderite formation in brackish and fresh-water swamp sediments. Am. J. Sci. 1982, 282, 1151.
Pyrite and siderite formation in brackish and fresh-water swamp sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmsF2l&md5=b1eb6c13547b184f4362234650ed2a3dCAS |

[39]  C. Pallud, P. Van Cappellen, Kinetics of microbial sulfate reduction in estuarine sediments. Geochim. Cosmochim. Acta 2006, 70, 1148.
Kinetics of microbial sulfate reduction in estuarine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslKnsL4%3D&md5=1812f05fc1c30df4849b13692494bcdcCAS |

[40]  D. G. Kinniburgh, P. L. Smedley (Eds), Arsenic contamination of groundwater in Bangladesh Arsenic contamination of groundwater in Bangladesh 2001 (British Geological Survey: Keyworth, UK).

[41]  S. Klump, R. Kipfer, O. A. Cirpka, C. F. Harvey, M. S. Brennwald, K. N. Ashfaque, A. B. M. Badruzzaman, S. J. Hug, D. M. Imboden, Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environ. Sci. Technol. 2006, 40, 243.
Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1emsbfM&md5=4c2255c443aa65f9a0c4069ad31a806bCAS | 16433358PubMed |

[42]  P. Ravenscroft, W. G. Burgess, K. M. Ahmed, M. Burren, J. Perrin, Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting. Hydrogeol. J. 2005, 13, 727.
Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GksrrI&md5=82b964471d80ff6981f79327541743c5CAS |

[43]  J. M. McArthur, B. Nath, D. M. Banerjee, R. Purohit, N. Grassineau, Palaeosol Control on Groundwater Flow and Pollutant Distribution: The Example of Arsenic. Environ. Sci. Technol. 2011, 45, 1376.
Palaeosol Control on Groundwater Flow and Pollutant Distribution: The Example of Arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKgsbg%3D&md5=9496b5c1f69de4ce180c2c4eb5f2a18aCAS | 21268629PubMed |

[44]  S. Sengupta, J. M. McArthur, A. Sarkar, M. J. Leng, P. Ravenscroft, R. J. Howarth, D. M. Banerjee, Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal. Environ. Sci. Technol. 2008, 42, 5156.
Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGku7o%3D&md5=0b542a44bb43cadf2447ad5138de3759CAS | 18754363PubMed |

[45]  M. L. Sampson, B. Bostick, H. Chiew, J. M. Hagan, A. Shantz, Arsenicosis in Cambodia: Case studies and policy response. Appl. Geochem. 2008, 23, 2977.
Arsenicosis in Cambodia: Case studies and policy response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWkurzI&md5=60ac1fc9c1286067d21e394dd0cf678dCAS |

[46]  M. M. Rahman, M. K. Sengupta, U. K. Chowdhury, D. Lodh, B. Das, S. Ahamed, D. Mandal, M. A. Hossain, S. C. Mukherjee, S. Pati, K. C. Saha, D. Chakrabarty, Arsenic contamination incidents around the world, in Managing Arsenic in the Environment: From Soil to Human Health (Eds R. Naidu, E. Smith, G. Owens, P. Bhattacharya, P. Nadebaum) 2006, pp. 3–30 (CSIRO Publishing).

[47]  H. A. Lowers, G. N. Breit, A. L. Foster, J. Whitney, J. Yount, N. Uddin, A. Muneem, Arsenic incorporation into authigenic pyrite, bengal basin sediment, Bangladesh. Geochim. Cosmochim. Acta 2007, 71, 2699.
Arsenic incorporation into authigenic pyrite, bengal basin sediment, Bangladesh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslWmu7c%3D&md5=d9f545db172b7afd2f56046ae30f82a1CAS |

[48]  B. C. Bostick, S. Fendorf, B. A. Manning, Arsenite adsorption on galena (PbS) and sphalerite (ZnS). Geochim. Cosmochim. Acta 2003, 67, 895.
Arsenite adsorption on galena (PbS) and sphalerite (ZnS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1WgtL8%3D&md5=d3240b446a87b23e812edeb961bb4f10CAS |

[49]  P. A. O'Day, D. Vlassopoulos, R. Root, N. Rivera, The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. USA 2004, 101, 13 703.
The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVygtrk%3D&md5=ed0e21739bc198e411ffdfdb7ae42a0eCAS |

[50]  R. A. Root, D. Vlassopoulos, N. A. Rivera, M. T. Rafferty, C. Andrews, P. A. O'Day, Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer. Geochim. Cosmochim. Acta 2009, 73, 5528.
Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKjsrfI&md5=1e28621c8d1072dc88fce1856c312210CAS |

[51]  H. D. Pedersen, D. Postma, R. Jakobsen, Release of arsenic associated with the reduction and transformation of iron oxides. Geochim. Cosmochim. Acta 2006, 70, 4116.
Release of arsenic associated with the reduction and transformation of iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVejsrk%3D&md5=1f1565cfa4bf9202d52a122a8712f0c1CAS |

[52]  A. Burnol, L. Charlet, Fe(II)-Fe(III)-Bearing phases as a mineralogical control on the heterogeneity of arsenic in Southeast Asian groundwater. Environ. Sci. Technol. 2010, 44, 7541.
Fe(II)-Fe(III)-Bearing phases as a mineralogical control on the heterogeneity of arsenic in Southeast Asian groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChs7vO&md5=f9f3cb2675a55e2e76b341bf1ad117c2CAS | 20831208PubMed |

[53]  V. S. Coker, A. G. Gault, C. I. Pearce, G. van der Laan, N. D. Telling, J. M. Charnock, D. A. Polya, J. R. Lloyd, XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite. Environ. Sci. Technol. 2006, 40, 7745.
XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKntrzK&md5=e0fe654c2b9e7f62e7b378a1666679eaCAS | 17256522PubMed |

[54]  A. van Geen, B. C. Bostick, P. T. K. Trang, V. M. Lan, N. N. Mai, P. D. Manh, P. H. Viet, K. Radloff, Z. Aziz, J. L. Mey, M. O. Stahl, C. F. Harvey, P. Oates, B. Weinman, C. Stengel, F. Frei, R. Kipfer, M. Berg, Retardation of arsenic transport through a Pleistocene aquifer. Nature 2013, 501, 204.
Retardation of arsenic transport through a Pleistocene aquifer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVejtbfK&md5=a71ef5d860516e081b1aac4f70a58e97CAS | 24025840PubMed |

[55]  K. A. Radloff, Y. Zheng, H. A. Michael, M. Stute, B. C. Bostick, I. Mihajlov, M. Bounds, M. R. Huq, I. Choudhury, M. W. Rahman, P. Schlosser, K. M. Ahmed, A. van Geen, Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nat. Geosci. 2011, 4, 793.
Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12iu7bF&md5=70e335fc8184e64e1914026e1af91749CAS | 22308168PubMed |

[56]  B. J. Mailloux, E. Trembath-Reichert, J. Cheung, M. Watson, M. Stute, G. A. Freyer, A. S. Ferguson, K. M. Ahmed, M. J. Alam, B. A. Buchholz, J. Thomas, A. C. Layton, Y. Zheng, B. C. Bostick, A. van Geen, Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater. Proc. Natl. Acad. Sci. USA 2013, 110, 5331.
Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVehtbw%3D&md5=f62d70f6a2ffd857a9becb10c041d5c2CAS | 23487743PubMed |

[57]  M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kogel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, S. E. Trumbore, Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49.
Persistence of soil organic matter as an ecosystem property.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yltrnF&md5=3e76edf722107a92d084dea2f180e879CAS |