Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Are humans exposed to increasing amounts of unidentified organofluorine?

Leo W. Y. Yeung A and Scott A. Mabury A B

A Department of Chemistry, University of Toronto, 80 St George Street, Toronto, M5S 3H6, ON, Canada.

B Corresponding author. Email: smabury@chem.utoronto.ca

Environmental Chemistry 13(1) 102-110 https://doi.org/10.1071/EN15041
Submitted: 27 September 2014  Accepted: 7 May 2015   Published: 15 September 2015

Environmental context. Polyfluorinated substances are anthropogenic chemicals that have been widely used in several industrial and commercial applications. Analysis of human plasma samples collected from Münster in Germany revealed, since the year 2000, increasing amounts and proportion of unidentified organofluorines. The increasing trend of unidentified organofluorines in plasma samples suggests that humans are being exposed to new and unidentified fluorinated products.

Abstract. Samples of human plasma (n = 122) from two German cities (collected in 1982–2009, excluding 1994) and whole blood (n = 47) from seven Chinese cities (collected in 2004) were analysed for 52 polyfluoroalkyl/perfluoroalkyl substances (PFASs) using LC-MS/MS. Quantifiable PFASs included some newly identified and commercially available chemicals PFPAs, PFPiAs, FTSAs, PAPs and di-SAmPAP, metabolites of fluorotelomer-based products (FTCAs/FTUCAs), PFCAs, PFSAs, FASAs and FOSAAs. The blood samples were also analysed for extractable organofluorine (EOF) using total organofluorine combustion ion chromatography (TOF-CIC). Seven more PFASs (C7 and C10 PFSAs, FOSAA, MeFOSAA, EtFOSAA, C13 PFCA and 8 : 2 FTSA) were detected in the Chinese samples than had been previously reported. For the German samples, PFHpS, FOSA, MeFOSA, EtFOSA, FTSAs (6 : 2, 8 : 2), PFPAs (C6, C8) and PFPiAs (C6/C6, C6/C8, C8/C8) were additional chemicals identified that were not measured in the earlier studies. Those newly identified and commercially available PFASs were either at trace levels (pg mL–1) or not detected. A mass balance of fluorine between quantifiable PFAS and EOF in the Chinese samples indicated quantifiable PFASs accounted for 31–86 % of EOF. For the German samples, the quantifiable PFAS accounted for 52–100 % and 57–100 % of EOF in Münster and Halle samples respectively. After the year 2000, an increasing amount and proportion of unidentified organofluorine were observed in Münster samples. The increasing trend of unidentified organofluorine in plasma samples suggested humans are being exposed to new and unidentified fluorinated products.


References

[1]  E. Kissa, Fluorinated Surfactants and Repellents, 2nd edn 2001 (Marcel Dekker: New York).

[2]  L. W. Y. Yeung, Y. Miyake, S. Taniyasu, Y. Wang, H. Yu, M. K. So, G. Jiang, Y. Wu, J. Li, J. P. Giesy, N. Yamashita, P. K. Lam, Perfluorinated compounds and total and extractable organic fluorine in human blood samples from China. Environ. Sci. Technol. 2008, 42, 8140.
Perfluorinated compounds and total and extractable organic fluorine in human blood samples from China.CrossRef | 1:CAS:528:DC%2BD1cXhtFOqt7nF&md5=9508021e427fd10f18111a50e4612419CAS | open url image1

[3]  J. C. D’eon, S. A. Mabury, Exploring indirect sources of human exposure to perfluoroalkyl carboxylates (PFCAs): evaluating uptake, elimination, and biotransformation of polyfluoroalkyl phosphate esters (PAPs) in the rat. Environ. Health Perspect. 2010, 119, 344.
Exploring indirect sources of human exposure to perfluoroalkyl carboxylates (PFCAs): evaluating uptake, elimination, and biotransformation of polyfluoroalkyl phosphate esters (PAPs) in the rat.CrossRef | 21059488PubMed | open url image1

[4]  H. Lee, J. D’eon, S. A. Mabury, Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment. Environ. Sci. Technol. 2010, 44, 3305.
Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment.CrossRef | 1:CAS:528:DC%2BC3cXktVWltLY%3D&md5=e57b38792cb86ba86eaa0b50b82a8532CAS | 20355697PubMed | open url image1

[5]  J. C. D’eon, P. W. Crozier, V. I. Furdui, E. J. Reiner, E. L. Libelo, S. A. Mabury, Observation of a commercial fluorinated material, the polyfluoroalkyl phosphoric acid diesters, in human sera, wastewater treatment plant sludge, and paper fibers. Environ. Sci. Technol. 2009, 43, 4589.
Observation of a commercial fluorinated material, the polyfluoroalkyl phosphoric acid diesters, in human sera, wastewater treatment plant sludge, and paper fibers.CrossRef | 1:CAS:528:DC%2BD1MXltFOlsLw%3D&md5=2b297e369a49e72665e23abe2425e01bCAS | 19603681PubMed | open url image1

[6]  H. Lee, S. A. Mabury, A pilot survey of legacy and current commercial fluorinated chemicals in human sera from United States donors in 2009. Environ. Sci. Technol. 2011, 45, 8067.
A pilot survey of legacy and current commercial fluorinated chemicals in human sera from United States donors in 2009.CrossRef | 1:CAS:528:DC%2BC3MXksFGgtLc%3D&md5=ff5f77f511d765f23e1a128e071bebb5CAS | 21486041PubMed | open url image1

[7]  L. W. Y. Yeung, S. J. Robinson, J. Koschorreck, S. A. Mabury, Part I. A temporal study of PFCAs and their precursors in human plasma from two German cities 1982. Environ. Sci. Technol. 2013, 47, 3865.
Part I. A temporal study of PFCAs and their precursors in human plasma from two German cities 1982.CrossRef | 1:CAS:528:DC%2BC3sXjvFWhsr8%3D&md5=4bd771f412022f1434789649f0a014bfCAS | open url image1

[8]  E. I. H. Loi, L. W. Y. Yeung, S. A. Mabury, P. K. S. Lam, Detections of commercial fluorosurfactants in Hong Kong marine environment and human blood: a pilot study. Environ. Sci. Technol. 2013, 47, 4677.
Detections of commercial fluorosurfactants in Hong Kong marine environment and human blood: a pilot study.CrossRef | 1:CAS:528:DC%2BC3sXksFSkt7k%3D&md5=a1848d5a8cb22de24937830508846a5aCAS | open url image1

[9]  C. Lad, N. H. Williams, R. Wolfenden, The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases. Proc. Natl. Acad. Sci. USA 2003, 100, 5607.
The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases.CrossRef | 1:CAS:528:DC%2BD3sXjvFOmurY%3D&md5=0686747114e39e87ab7eba2a6de0010fCAS | 12721374PubMed | open url image1

[10]  D. A. Jackson, S. A. Mabury, Enzymatic kinetic parameters for polyfluorinated alkyl phosphate hydrolysis by alkaline phosphatase. Environ. Toxicol. Chem. 2012, 31, 1966.
Enzymatic kinetic parameters for polyfluorinated alkyl phosphate hydrolysis by alkaline phosphatase.CrossRef | 1:CAS:528:DC%2BC38Xhs1KjtL3J&md5=ab7d325f5b566705d49ddb199d7d2682CAS | 22714665PubMed | open url image1

[11]  H. Ding, H. Peng, M. Yang, J. Hu, Simultaneous determination of mono- and disubstituted polyfluoroalkyl phosphates in drinking water by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 2012, 1227, 245.
Simultaneous determination of mono- and disubstituted polyfluoroalkyl phosphates in drinking water by liquid chromatography-electrospray tandem mass spectrometry.CrossRef | 1:CAS:528:DC%2BC38XitFOrs7w%3D&md5=feb215c573b9214e987813be18ece830CAS | 22284536PubMed | open url image1

[12]  R. Liu, T. Ruan, T. Wang, S. Song, M. Yu, Y. Gao, J. Shao, G. Jiang, Trace analysis of mono-, di-, tri-substituted polyfluoroalkyl phosphates and perfluorinated phosphonic acids in sewage sludge by high performance liquid chromatography tandem mass spectrometry. Talanta 2013, 111, 170.
Trace analysis of mono-, di-, tri-substituted polyfluoroalkyl phosphates and perfluorinated phosphonic acids in sewage sludge by high performance liquid chromatography tandem mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3sXltVCjsr0%3D&md5=4a0fa4b8769e525e409ca1b603c702bdCAS | 23622541PubMed | open url image1

[13]  J. C. D’eon, P. W. Crozier, V. I. Furdui, E. J. Reiner, E. L. Libelo, S. A. Mabury, Perfluorinated phosphonic acids in Canadian surface waters and wastewater treatment plant effluent: discovery of a new class of perfluorinated acids. Environ. Toxicol. Chem. 2009, 28, 2101.
Perfluorinated phosphonic acids in Canadian surface waters and wastewater treatment plant effluent: discovery of a new class of perfluorinated acids.CrossRef | 1:CAS:528:DC%2BD1MXht1Srur%2FE&md5=7ae4d3b7c90430668adf870f6bd53d91CAS | 19463027PubMed | open url image1

[14]  Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty. SC News Release 2009/04 2009 (Secretariat of the Stockholm Convention: Châtelaine, Switzerland). Available at http://chm.pops.int/Convention/Pressrelease/COP4Geneva9May2009/tabid/542/languages/en-US/Default.aspx [Verified 9 July 2015].

[15]  G. W. Olsen, C. C. Lange, M. E. Ellefson, D. C. Mair, T. R. Church, C. L. Goldberg, R. M. Herron, Z. Medhdizadehkashi, J. B. Nobiletti, J. A. Rios, W. K. Reagen, L. R. Zobel, Temporal trends of perfluoroalkyl concentrations in American Red Cross adult blood donors, 2000–2010. Environ. Sci. Technol. 2012, 46, 6330.
Temporal trends of perfluoroalkyl concentrations in American Red Cross adult blood donors, 2000–2010.CrossRef | 1:CAS:528:DC%2BC38XmsVWnsr4%3D&md5=474cd0f57c0cd35875962a909e8f81ddCAS | 22554481PubMed | open url image1

[16]  A. Glynn, U. Berger, A. Bignert, S. Ullah, M. Aune, S. Lignell, P. O. Darnerud, Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: serial sampling during pregnancy and nursing, and temporal trends 1996–2010. Environ. Sci. Technol. 2012, 46, 9071.
Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: serial sampling during pregnancy and nursing, and temporal trends 1996–2010.CrossRef | 1:CAS:528:DC%2BC38XpvVarsrc%3D&md5=302ac89ede8c4106bb427c737dce9ca5CAS | 22770559PubMed | open url image1

[17]  L. S. Haug, C. Thomsen, G. Becher, Time trends and the influence of age and gender on serum concentrations of perfluorinated compounds in archived human samples. Environ. Sci. Technol. 2009, 43, 2131.
Time trends and the influence of age and gender on serum concentrations of perfluorinated compounds in archived human samples.CrossRef | 1:CAS:528:DC%2BD1MXhsFKit70%3D&md5=19a39b9543cedaa8bef3c20147fb68ecCAS | 19368225PubMed | open url image1

[18]  J. Liu, J. Li, Y. Luan, Y. Zhao, Y. Wu, Geographical distribution of perfluorinated compounds in human blood from Liaoning province, China. Environ. Sci. Technol. 2009, 43, 4044.
Geographical distribution of perfluorinated compounds in human blood from Liaoning province, China.CrossRef | 1:CAS:528:DC%2BD1MXlt1Sgt7Y%3D&md5=5ab21c2b39dffd474871369e909ba4d3CAS | 19569328PubMed | open url image1

[19]  Y. Jin, N. Saito, K. H. Harada, K. Inoue, A. Koizumi, Historical trends in human serum levels of perfluorooctanoate and perfluorooctane sulfonate in Shenyang, China. Tohoku J. Exp. Med. 2007, 212, 63.
Historical trends in human serum levels of perfluorooctanoate and perfluorooctane sulfonate in Shenyang, China.CrossRef | 1:CAS:528:DC%2BD2sXmtVyktr4%3D&md5=2d40145c4e879c7bc73e1325b48a4ac4CAS | 17464105PubMed | open url image1

[20]  L. W. Y. Yeung, S. J. Robinson, J. Koschorreck, S. A. Mabury, Part II. A temporal study of PFOS and its precursors in human plasma from two German cities in 1982–2009. Environ. Sci. Technol. 2013, 47, 3875.
Part II. A temporal study of PFOS and its precursors in human plasma from two German cities in 1982–2009.CrossRef | 1:CAS:528:DC%2BC3sXjvFWitLY%3D&md5=14443543a48e95e7995a90514815ac1eCAS | open url image1

[21]  Z. Wang, I. T. Cousins, M. Scheringer, K. Hungerbühler, Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ. Int. 2013, 60, 242.
Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors.CrossRef | 1:CAS:528:DC%2BC3sXhslejtrnI&md5=7602bd3ba96bb6911ca322e60182a80aCAS | 24660230PubMed | open url image1

[22]  S. Wang, J. Huang, Y. Yang, Y. Hui, Y. Ge, T. Larssen, G. Yu, S. Deng, B. Wang, C. Harman, First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. Environ. Sci. Technol. 2013, 47, 10163.
| 1:CAS:528:DC%2BC3sXht1yku7vM&md5=f0c1c4a241e0e0647cf580f6fe52f2b0CAS | 23952109PubMed | open url image1

[23]  L. A. D’Agostino, S. A. Mabury, Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. Environ. Sci. Technol. 2014, 48, 121.
Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates.CrossRef | 1:CAS:528:DC%2BC3sXhvVWmsrvL&md5=8d4ad7233a1d39f05387faadcc26c8aeCAS | 24256061PubMed | open url image1

[24]  L. W. Y. Yeung, M. K. So, G. Jiang, S. Taniyasu, N. Yamashita, M. Song, Y. Wu, J. Li, J. P. Giesy, K. S. Guruge, P. K. S. Lam, Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China. Environ. Sci. Technol. 2006, 40, 715.
Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China.CrossRef | 1:CAS:528:DC%2BD2MXhtlekurbP&md5=bdd293774e91e0bd29a2338831d5c2e9CAS | open url image1

[25]  M. Kolossa-Gehring, K. Becker, A. Conrad, C. Schröter-Kermani, C. Schulz, M. Seiwert, Environmental surveys, specimen bank and health related environmental monitoring in Germany. Int. J. Hyg. Environ. Health 2012, 215, 120.
Environmental surveys, specimen bank and health related environmental monitoring in Germany.CrossRef | 1:CAS:528:DC%2BC38XivVCrtrY%3D&md5=13981dd945c70bbc7378fc1a90427d53CAS | 22172995PubMed | open url image1

[26]  G. A. Wiesmüller, R. Eckard, L. Dobler, A. Günsel, M. Oganowski, C. Schröter-Kermani, C. Schlüter, A. Gies, F. H. Kemper, The environmental specimen bank for human tissues as part of the German Environmental Specimen Bank. Int. J. Hyg. Environ. Health 2007, 210, 299.
The environmental specimen bank for human tissues as part of the German Environmental Specimen Bank.CrossRef | 17369091PubMed | open url image1

[27]  K. J. Hansen, L. A. Clemen, M. E. Ellefson, H. O. Johnson, Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ. Sci. Technol. 2001, 35, 766.
Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices.CrossRef | 1:CAS:528:DC%2BD3MXivValtA%3D%3D&md5=64eda94f0feca7dee797943f14982ed6CAS | 11349290PubMed | open url image1

[28]  A. O. De Silva, C. N. Allard, C. Spencer, G. M. Webster, M. Shoeib, Phosphorus-containing fluorinated organics: polyfluoroalkyl phosphoric acid diesters (diPAPs), perfluorophosphonates (PFPAs), and perfluorophosphinates (PFPIAs) in residential indoor dust. Environ. Sci. Technol. 2012, 46,
Phosphorus-containing fluorinated organics: polyfluoroalkyl phosphoric acid diesters (diPAPs), perfluorophosphonates (PFPAs), and perfluorophosphinates (PFPIAs) in residential indoor dust.CrossRef | 1:CAS:528:DC%2BC38XhsFOntLfN&md5=2038edeebdb624e2be788ec50ad6a621CAS | 23102111PubMed | open url image1

[29]  S. Ullah, T. Alsberg, U. Berger, Simultaneous determination of perfluoroalkyl phosphonates, carboxylates, and sulfonates in drinking water. J. Chromatogr. A 2011, 1218, 6388.
Simultaneous determination of perfluoroalkyl phosphonates, carboxylates, and sulfonates in drinking water.CrossRef | 1:CAS:528:DC%2BC3MXhtFSjtrbK&md5=8497c99f564a20d15675d1d92a5716f5CAS | 21791340PubMed | open url image1

[30]  X. Esparza, E. Moyano, J. de Boer, M. T. Galceran, S. P. J. van Leeuwen, Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC-MS/MS. Talanta 2011, 86, 329.
Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC-MS/MS.CrossRef | 1:CAS:528:DC%2BC3MXhsVaqt7rE&md5=6c637851862a141407f513b8e1b1f459CAS | 22063548PubMed | open url image1

[31]  L. W. Y. Yeung, S. A. Mabury, Bioconcentration of aqueous film-forming foam (AFFF) in juvenile rainbow trout (Oncorhyncus mykiss). Environ. Sci. Technol. 2013, 47,
Bioconcentration of aqueous film-forming foam (AFFF) in juvenile rainbow trout (Oncorhyncus mykiss).CrossRef | open url image1

[32]  A. A. Rand, S. A. Mabury, In vitro interactions of biological nucleophiles with fluorotelomer unsaturated acids and aldehydes: fate and consequences. Environ. Sci. Technol. 2012, 46, 7398.
In vitro interactions of biological nucleophiles with fluorotelomer unsaturated acids and aldehydes: fate and consequences.CrossRef | 1:CAS:528:DC%2BC38XmvFWqtr0%3D&md5=87518cd084cc8f87de52228b2dc55180CAS | 22582947PubMed | open url image1

[33]  J. M. Keller, A. M. Calafat, K. Kato, M. E. Ellefson, W. K. Reagen, M. Strynar, S. O’Connell, C. M. Butt, S. A. Mabury, J. Small, D. C. G. Muir, S. D. Leigh, M. M. Schantz, Determination of perfluorinated alkyl acid concentrations in human serum and milk standard reference materials. Anal. Bioanal. Chem. 2010, 397, 439.
Determination of perfluorinated alkyl acid concentrations in human serum and milk standard reference materials.CrossRef | 1:CAS:528:DC%2BD1MXhtlaksrzO&md5=c3d5dea502a616ab6ff37adbba532843CAS | 19862506PubMed | open url image1

[34]  W. S. Cleveland, Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829.
Robust locally weighted regression and smoothing scatterplots.CrossRef | open url image1

[35]  R. J. Fryer, M. D. Nicholson, Using smoothers for comprehensive assessment of contaminant time series in marine biota. ICES J. Mar. Sci. 1999, 56, 779.
Using smoothers for comprehensive assessment of contaminant time series in marine biota.CrossRef | open url image1

[36]  G. W. Olsen, T. R. Church, E. B. Larson, G. van Belle, J. K. Lundberg, K. J. Hansen, J. M. Burris, J. H. Mandel, L. R. Zobel, Serum concentrations of perfluorooctanesulfonate and other fluorochemicals in an elderly population from Seattle, Washington. Chemosphere 2004, 54, 1599.
Serum concentrations of perfluorooctanesulfonate and other fluorochemicals in an elderly population from Seattle, Washington.CrossRef | 1:CAS:528:DC%2BD3sXpvVWgsb0%3D&md5=6c1508aaf5bd73afacbb94b82fb14c04CAS | 14675839PubMed | open url image1

[37]  B. Weiner, L. W. Y. Yeung, E. B. Marchington, L. A. D’Agostino, S. A. Mabury, Organic fluorine content in aqueous film forming foams (AFFFs) and biodegradation of the foam component 6 : 2 fluorotelomermercaptoalkylamido sulfonate (6 : 2 FTSAS). Environ. Chem. 2013, 10, 486.
Organic fluorine content in aqueous film forming foams (AFFFs) and biodegradation of the foam component 6 : 2 fluorotelomermercaptoalkylamido sulfonate (6 : 2 FTSAS).CrossRef | 1:CAS:528:DC%2BC3sXhvFOiurfM&md5=b13071fd0f25cceea836c0321d50351eCAS | open url image1

[38]  M. M. Schultz, D. F. Barofsky, J. A. Field, Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environ. Sci. Technol. 2004, 38, 1828.
Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS.CrossRef | 1:CAS:528:DC%2BD2cXosl2jtA%3D%3D&md5=3651ff54e95d7c730d03491f2df45b9aCAS | 15074696PubMed | open url image1

[39]  E. F. Houtz, C. P. Higgins, J. A. Field, D. L. Sedlak, Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ. Sci. Technol. 2013, 47, 8187.
| 1:CAS:528:DC%2BC3sXhtFKlsbvE&md5=1419e9353b95d00ec123548e20ac8b46CAS | 23886337PubMed | open url image1

[40]  J. C. D’eon, S. A. Mabury, Uptake and elimination of perfluorinated phosphonic acids in the rat. Environ. Toxicol. Chem. 2010, 29, 1319.
| 1:CAS:528:DC%2BC3cXpsFCqu7c%3D&md5=ff40dedc3f5faf7ec94cbd88e78ca9d5CAS | 20821575PubMed | open url image1

[41]  J. P. Benskin, A. O. De Silva, L. J. Martin, G. Arsenault, R. McCrindle, N. Riddell, S. A. Mabury, J. W. Martin, Disposition of perfluorinated acid isomers in Sprague–Dawley rats. Part 1: single dose. Environ. Toxicol. Chem. 2009, 28, 542.
Disposition of perfluorinated acid isomers in Sprague–Dawley rats. Part 1: single dose.CrossRef | 1:CAS:528:DC%2BD1MXisV2gs7Y%3D&md5=738f8e048f66071ed6b75e8222e8b6b3CAS | 18939892PubMed | open url image1

[42]  A. O. De Silva, J. P. Benskin, L. J. Martin, G. Arsenault, R. McCrindle, N. Riddell, S. A. Mabury, J. W. Martin, Disposition of perfluorinated acid isomers in Sprague–Dawley rats; part 2: subchronic dose. Environ. Toxicol. Chem. 2009, 28, 555.
Disposition of perfluorinated acid isomers in Sprague–Dawley rats; part 2: subchronic dose.CrossRef | 1:CAS:528:DC%2BD1MXisV2gs7c%3D&md5=ab99a0053c77a772ff3fa3d9fb6a5434CAS | 18939893PubMed | open url image1

[43]  J. D. Johnson, S. J. Gibson, R. E. Ober, Extent and route of excretion and tissue distribution of total carbon-14 in rats after a single intravenous dose of FC-95-14C. Project number 8900310200. US EPA Docket 8(e) HQ-1180-00374 1979 (Riker Laboratories, Inc.: St Paul, MN).

[44]  H. Lee, A. O. De Silva, S. A. Mabury, Dietary bioaccumulation of perfluorophosphonates and perfluorophosphinates in juvenile rainbow trout: evidence of metabolism of perfluorophosphinates. Environ. Sci. Technol. 2012, 46, 3489.
Dietary bioaccumulation of perfluorophosphonates and perfluorophosphinates in juvenile rainbow trout: evidence of metabolism of perfluorophosphinates.CrossRef | 1:CAS:528:DC%2BC38Xit1Ogsr4%3D&md5=1a3d6aa3fe1bc01f7b98d039f911ede5CAS | 22335432PubMed | open url image1

[45]  K. Prevedouros, I. T. Cousins, R. C. Buck, S. H. Korzeniowski, Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32.
Sources, fate and transport of perfluorocarboxylates.CrossRef | 1:CAS:528:DC%2BD2MXht1Gru7zK&md5=cec798a9d24f70d969f844b8ca5c8120CAS | 16433330PubMed | open url image1

[46]  3M, Phase-out Plan for POSF-based Products. US EPA Docket OPPT-2002-0043 2000 (US EPA: St Paul, MN).

[47]  A. A. Rand, S. A. Mabury, Protein binding associated with exposure to fluorotelomer alcohols (FTOHs) and polyfluoroalkyl phosphate esters (PAPs) in rats. Environ. Sci. Technol. 2014, 48, 2421.
| 1:CAS:528:DC%2BC2cXht1Gis74%3D&md5=0cb11f1e66d2da8bfaa2491aa741c6f8CAS | 24460105PubMed | open url image1

[48]  L. W. Y. Yeung, A. O. De Silva, E. I. H. Loi, C. H. Marvin, S. Taniyasu, N. Yamashita, S. A. Mabury, D. C. G. Muir, P. K. S. Lam, Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario. Environ. Int. 2013, 59, 389.
Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario.CrossRef | 1:CAS:528:DC%2BC3sXhtl2qsrjJ&md5=c74c764b29d96bbc6226b83a93a78da3CAS | open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (1.8 MB) Export Citation Cited By (9)