Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Characterisation of suspended particulate matter in the Rhone River: insights into analogue selection

Danielle L. Slomberg A B , Patrick Ollivier C , Olivier Radakovitch A , Nicole Baran C , Nicole Sani-Kast D , Hélène Miche A , Daniel Borschneck A , Olivier Grauby E , Auguste Bruchet F , Martin Scheringer D and Jérôme Labille A B G
+ Author Affiliations
- Author Affiliations

A Aix-Marseille Université, CNRS (Centre national de la Recherche Scientifique), IRD (Institut de Recherche pour le Développement), CEREGE (Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement), UM 34, Europôle de l’Arbois, BP 80, F-13545 Aix-en-Provence, France.

B International Consortium for the Environmental Implications of Nanotechnology (iCEINT).

C BRGM (Bureau de Recherches Géologiques et Minières), UMR 7327, 3 Avenue Claude Guillemin, BP 36009, F-45060 Orléans, France.

D Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland.

E Aix-Marseille Université and CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), CNRS, UMR 7325, Campus de Luminy, Case 913, F-13288 Marseille, France.

F CIRSEE (Centre International de Recherche Sur l’Eau et l’Environnement)–Suez Environnement, 38 rue du Président Wilson, F-78230 Le Pecq, France.

G Corresponding author: labille@cerege.fr

Environmental Chemistry 13(5) 804-815 https://doi.org/10.1071/EN15065
Submitted: 28 March 2015  Accepted: 12 January 2016   Published: 29 March 2016

Environmental context. The fate and behaviour of pollutants such as pesticides, metals and nanoparticles in natural waters will influence their effects on the environment and human health. Owing to the complexity of natural waters and suspended particulate matter (SPM) that can interact with pollutants, as well as low pollutant concentrations, determination of pollutant fate and transport is non-trivial. Herein, we report a characterisation of the Rhone River chemistry to provide insight into selecting SPM analogues for experimental and modelling approaches.

Abstract. Selection of realistic suspended particulate matter (SPM) analogues remains vital for realising representative experimental and modelling approaches in predicting the environmental fate of pollutants. Here, we present the characterisation of dissolved-ion and SPM compositions for nine sampling sites over the length of the Rhone River. Dissolved-ion concentrations remained stable, but SPM concentrations varied among sampling sites. Size fractionation and mineralogical characterisation of the SPM revealed that the same minerals (e.g. quartz, calcite, muscovite) constituted every size class from 0.5 to >50 µm, as is usually found with allochthonous and large-scale systems. To gain insight into SPM analogue selection, aggregation kinetics of silica, calcite, muscovite, feldspars and clays were monitored in the native filtrate and related to the respective zeta potentials (ζ). An SPM mixture of calcite (49 %), muscovite (14 %), feldspar (23 %) and chlorite (14 %) proved the best match for the Rhone SPM, demonstrating that mineral surface chemistry, structure and size are all important in selecting a realistic SPM analogue for a riverine system.


References

[1]  C. Olsen, N. Cutshall, I. Larsen, Pollutant–particle associations and dynamics in coastal marine environments: a review. Mar. Chem. 1982, 11, 501.
Pollutant–particle associations and dynamics in coastal marine environments: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFCmsw%3D%3D&md5=95d9f92ed3976350d984cd5798475420CAS |

[2]  A. Petosa, D. Jaisi, I. Quevedo, M. Elimelech, N. Tufenkji, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 2010, 44, 6532.
Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSgt7g%3D&md5=2f4d9cf35e80b22783533027b068b65aCAS | 20687602PubMed |

[3]  M. Shafer, J. Overdier, J. Hurley, D. Armstrong, D. Webb, The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA). Chem. Geol. 1997, 136, 71.
The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhslOmurg%3D&md5=b875340c35554c3fbbd5cf1b3e478681CAS |

[4]  N. Warren, I. Allan, J. Carter, W. House, A. Parker, Pesticides and other micro-organic contaminants in freshwater sedimentary environments – a review. Appl. Geochem. 2003, 18, 159.
Pesticides and other micro-organic contaminants in freshwater sedimentary environments – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFehtLc%3D&md5=be674883d5defc87c806196399f97513CAS |

[5]  A. Torrents, S. Jayasundera, The sorption of non-ionic pesticides onto clays and the influence of natural organic carbon. Chemosphere 1997, 35, 1549.
The sorption of non-ionic pesticides onto clays and the influence of natural organic carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1GnsL8%3D&md5=8d02b2dce426e2e4c3ffe6b4de7d6a17CAS |

[6]  R. Kretzschmar, T. Schäfer, Metal retention and transport on colloidal particles in the environment. Elements 2005, 1, 205.
Metal retention and transport on colloidal particles in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGiu7vL&md5=28f3b11d6c79fb98ac4e2df892c39bebCAS |

[7]  D. Lin, X. Tian, F. Wu, B. Xing, Fate and transport of engineered nanomaterials in the environment. J. Environ. Qual. 2010, 39, 1896.
Fate and transport of engineered nanomaterials in the environment.Crossref | GoogleScholarGoogle Scholar | 21284287PubMed |

[8]  M. Wiesner, J.-Y. Bottero, Part IV. Potential impacts of nanomaterials, in Environmental Nanotechnology 2007, pp. 395–522 (McGraw-Hill Education: New York).

[9]  M. Wiesner, J.-Y. Bottero, Chapter 7. Nanoparticle transport, aggregation, and deposition, in Environmental Nanotechnology 2007, pp. 231–288 (McGraw-Hill Education: New York).

[10]  D. Broman, C. Näf, Y. Zebühr, K. Lexén, The composition, distribution and flux of PCDDs and PCDFs in settling particulate matter (SPM) – a sediment trap study in the northern Baltic. Chemosphere 1989, 19, 445.
The composition, distribution and flux of PCDDs and PCDFs in settling particulate matter (SPM) – a sediment trap study in the northern Baltic.Crossref | GoogleScholarGoogle Scholar |

[11]  J. Buffle, K. Wilkinson, S. Stoll, M. Filella, J. Zhang, A generalized description of aquatic colloidal interactions: the three-colloidal-component approach. Environ. Sci. Technol. 1998, 32, 2887.
A generalized description of aquatic colloidal interactions: the three-colloidal-component approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVyqt7w%3D&md5=55f16ae7b3402ddbec23175c1de9f2f4CAS |

[12]  A. Kot-Wasik, J. Dębska, J. Namieśnik, Analytical techniques in studies of the environmental fate of pharmaceuticals and personal-care products. Trends Analyt. Chem. 2007, 26, 557.
Analytical techniques in studies of the environmental fate of pharmaceuticals and personal-care products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFajsbY%3D&md5=dfc3b034eddf0dc85b59d24d20678051CAS |

[13]  M. Hassellöv, J. Readman, J. Ranville, K. Tiede, Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicol. 2008, 17, 344.
Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles.Crossref | GoogleScholarGoogle Scholar |

[14]  K. Tiede, M. Hassellöv, E. Breitbarth, Q. Chaudhry, A. Boxall, Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J. Chromatogr. A 2009, 1216, 503.
Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCls7zK&md5=7b5806d38f88c890e94739b9176efa23CAS | 18805541PubMed |

[15]  M. Pesavento, G. Alberti, R. Biesuz, Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal. Chim. Acta 2009, 631, 129.
Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWis73L&md5=e2511e39a7231cbeacf99c363b817b9eCAS | 19084618PubMed |

[16]  F. von der Kammer, P. Ferguson, P. Holden, A. Masion, K. Rogers, S. Klaine, A. Koelmans, N. Horne, J. Unrine, Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32.
Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yksbfF&md5=906b6d10d56f679b93266f83db944126CAS | 22021021PubMed |

[17]  M. MacLeod, M. Scheringer, T. McKone, K. Hungerbuhler, The state of multimedia mass-balance modeling in environmental science and decision-making. Environ. Sci. Technol. 2010, 44, 8360.
The state of multimedia mass-balance modeling in environmental science and decision-making.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Gqt7%2FI&md5=cac1bf379c9d8d5c046a727d3ac62036CAS | 20964363PubMed |

[18]  N. Sani-Kast, M. Scheringer, D. Slomberg, J. Labille, A. Praetorius, P. Ollivier, K. Hungerbühler, Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Sci. Total Environ. 2015, 535, 150.
Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFOmtg%3D%3D&md5=f0a19ddb265fdf2c756cdc586abafa40CAS | 25636351PubMed |

[19]  E. Goldberg, M. Baker, D. Fox, Microfiltration in oceanographic research. 1. Marine sampling with the molecular filter. J. Mar. Res. 1952, 11, 194.
| 1:CAS:528:DyaG3sXhsVOhsw%3D%3D&md5=5609425fc882416d623af692a2aa4b43CAS |

[20]  M. Dai, J.-M. Martin, G. Cauwet, The significant role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhône delta (France). Mar. Chem. 1995, 51, 159.
The significant role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhône delta (France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovVymtrc%3D&md5=b8748830fba3a4f6fef59e55e2c3026cCAS |

[21]  D. Vignati, J. Dominik, The role of coarse colloids as a carrier phase for trace metals in riverine systems. Aquat. Sci. 2003, 65, 129.
| 1:CAS:528:DC%2BD3sXmvFOgsr4%3D&md5=b31d7692b8a81aed3059ad52ae627461CAS |

[22]  A. Horowitz, K. Elrick, The relation of stream sediment surface area, grain size and composition to trace element chemistry. Appl. Geochem. 1987, 2, 437.
The relation of stream sediment surface area, grain size and composition to trace element chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhslWjtLo%3D&md5=2a0f7d72f8965b81c5b6c869b476388bCAS |

[23]  M. Filella, J. Buffle, Factors controlling the stability of submicron colloids in natural waters. Colloids Surf. A Physicochem. Eng. Asp. 1993, 73, 255.
Factors controlling the stability of submicron colloids in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslyisL8%3D&md5=9495f607b5723343a6ffac1c23e57b73CAS |

[24]  J. Buffle, G. Leppard, Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ. Sci. Technol. 1995, 29, 2169.
Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFKksrs%3D&md5=43308d1f31d00d197c1443c456469e65CAS | 22280252PubMed |

[25]  K. Wilkinson, J. Negre, J. Buffle, Coagulation of colloidal material in surface waters: the role of natural organic matter. J. Contam. Hydrol. 1997, 26, 229.
Coagulation of colloidal material in surface waters: the role of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1Smt74%3D&md5=ac4a8fc7534f85ee6f5e59da0cd617d2CAS |

[26]  G. Douglas, B. Hart, R. Beckett, C. Gray, R. Oliver, Geochemistry of suspended particulate matter (SPM) in the Murray–Darling river system: a conceptual isotopic/geochemical model for the fractionation of major, trace and rare earth elements. Aquat. Geochem. 1999, 5, 167.
Geochemistry of suspended particulate matter (SPM) in the Murray–Darling river system: a conceptual isotopic/geochemical model for the fractionation of major, trace and rare earth elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVeiu7s%3D&md5=0ca22c9dabc6321f08369a039d5bec79CAS |

[27]  Y. Ran, J. Fu, G. Sheng, R. Beckett, B. Hart, Fractionation and composition of colloidal and suspended particulate materials in rivers. Chemosphere 2000, 41, 33.
Fractionation and composition of colloidal and suspended particulate materials in rivers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFKks7g%3D&md5=a06df8e57ecf6ef808c2f78b116e340dCAS | 10819177PubMed |

[28]  B. Zhmud, W. House, E. Sevastyanova, Interaction of flutriafol with the surface of silica and layer silicates. Colloids Surf. A Physicochem. Eng. Asp. 1997, 127, 187.
Interaction of flutriafol with the surface of silica and layer silicates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltFSrsrc%3D&md5=d4bcce5086d3138abc9c7cd805cbe18bCAS |

[29]  K. Maskaoui, J. Zhou, Colloids as a sink for certain pharmaceuticals in the aquatic environment. Environ. Sci. Pollut. Res. 2010, 17, 898.
Colloids as a sink for certain pharmaceuticals in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Wku7w%3D&md5=eed06f0b686a2b0dd3fe2f0e87e696caCAS |

[30]  A. Praetorius, J. Labille, M. Scheringer, A. Thill, K. Hungerbühler, J.-Y. Bottero, Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions. Environ. Sci. Technol. 2014, 48, 10690.
Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKms7bM&md5=54f7bc2dddc1fcb58210b446567ab094CAS | 25127331PubMed |

[31]  J. Labille, C. Harns, J.-Y. Bottero, J. Brant, Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids under environmentally relevant conditions. Environ. Sci. Technol. 2015, 49, 6608.
Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids under environmentally relevant conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFSgsbw%3D&md5=0d0f21796e208052e9ddcd077ddb33ccCAS | 25913600PubMed |

[32]  P. Ollivier, O. Radakovitch, B. Hamelin, Major and trace element partition and fluxes in the Rhône River. Chem. Geol. 2011, 285, 15.
Major and trace element partition and fluxes in the Rhône River.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslSlt7g%3D&md5=6f6f3e8beea0da432ba5a78ef81970ddCAS |

[33]  W. Rubey, Settling velocity of gravel, sand, and silt particles. Am. J. Sci. 1933, 25, 325.
Settling velocity of gravel, sand, and silt particles.Crossref | GoogleScholarGoogle Scholar |

[34]  Base de Données, Observatoire des Sédiments du Rhône 2013 (Groupe de Recherche Rhône-Alpes sur les Infrastructures et l’Eau). Available at http://www.graie.org/osr/spip.php?rubrique44 [verified 4 December 2013].

[35]  Vigicrues: Information Nationale sur la Vigilance Crues 2013 (Ministère de l’Écologie, du Développement Durable et de l’Énergie). Available at http://www.vigicrues.gouv.fr [verified 4 December 2013].

[36]  P. Ollivier, B. Hamelin, O. Radakovitch, Seasonal variations of physical and chemical erosion: a three-year survey of the Rhone River (France). Geochim. Cosmochim. Acta 2010, 74, 907.
Seasonal variations of physical and chemical erosion: a three-year survey of the Rhone River (France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Slsb3N&md5=c1c149a55a1815f2c2d1e52d380b700fCAS |

[37]  D. Pont, J. Simonnet, A. Walter, Medium-term changes in suspended sediment delivery to the ocean: consequences of catchment heterogeneity and river management (Rhône River, France). Estuar. Coast. Shelf Sci. 2002, 54, 1.
Medium-term changes in suspended sediment delivery to the ocean: consequences of catchment heterogeneity and river management (Rhône River, France).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSnsbg%3D&md5=c3d28506deb5c82102812a8d50cdc413CAS |

[38]  O. Radakovitch, S. Gairoard, D. Delanghe-Sabatier, B. Angeletti, P. Kerhervé, C. Menniti, P. Raimbault, M. Fornier, F. Eyrolle-Boyer, C. Antonelli, M. Zebracki, J. Le Coz M. Coquery, M. Launay, Caractérisation bio-physico-chimique et traçages des sédiments et des polluants associés. Observatoire des Sédiments du Rhône. Action 7. Groupe de Recherche Rhône-Alpes sur les Infrastructures et l’Eau, 2014. Available at http://www.graie.org/osr/IMG/pdf/A7_rapp-_final_mars_2014.pdf [verified 9 February 2016].

[39]  C. Wentworth, A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377.
A scale of grade and class terms for clastic sediments.Crossref | GoogleScholarGoogle Scholar |

[40]  R. Van Den Bogaert, J. Labille, S. Cornu, Aggregation and dispersion behavior in the 0- to 2- µm fraction of Luvisols. Soil Sci. Soc. Am. J. 2015, 79, 43.
Aggregation and dispersion behavior in the 0- to 2- µm fraction of Luvisols.Crossref | GoogleScholarGoogle Scholar |

[41]  P. Andermatt, H. Graf, N. Meisser, S. Graeser, P. Richards, F. Bussy, La morphologie et la couleur des cristaux de célestine du Jura vaudois. Bull. Soc. Vaud. Sci. Nat. 2008, 91, 15.

[42]  J. Wright, Making loess-sized quartz silt: data from laboratory simulations and implications for sediment transport pathways and the formation of ‘desert’ loess deposits associated with the Sahara. Quat. Int. 2001, 76–77, 7.
Making loess-sized quartz silt: data from laboratory simulations and implications for sediment transport pathways and the formation of ‘desert’ loess deposits associated with the Sahara.Crossref | GoogleScholarGoogle Scholar |

[43]  M. Suzumura, Persulfate chemical wet oxidation method for the determination of particulate phosphorus in comparison with a high-temperature dry-combustion method. Limnol. Oceanogr. Methods 2008, 6, 619.
Persulfate chemical wet oxidation method for the determination of particulate phosphorus in comparison with a high-temperature dry-combustion method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWqsLzM&md5=0e0650047bc08d6d470f18a5fc037808CAS |

[44]  A. Thill, S. Moustier, J.-M. Garnier, C. Estournel, J.-J. Naudin, J.-Y. Bottero, Evolution of particle size and concentration in the Rhône river mixing zone: influence of salt flocculation. Cont. Shelf Res. 2001, 21, 2127.
Evolution of particle size and concentration in the Rhône river mixing zone: influence of salt flocculation.Crossref | GoogleScholarGoogle Scholar |

[45]  R. Beckett, N. Le, The role or organic matter and ionic composition in determining the surface charge of suspended particles in natural waters. Colloids Surf. 1990, 44, 35.
The role or organic matter and ionic composition in determining the surface charge of suspended particles in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1artb8%3D&md5=bf8f371acb1b9aafa3080d35017ce200CAS |

[46]  J. McCarthy, J. Zachara, Subsurface transport of contaminants. Environ. Sci. Technol. 1989, 23, 496.
| 1:CAS:528:DyaL1MXitlKktLs%3D&md5=adbcfaf23eb4f202e0b55aa4e11d45ffCAS |

[47]  B. Derjaguin, L. Landau, The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions. Acta Physicochim URSS 1941, 14, 633.

[48]  E. Verwey, J. Overbeek, Theory of the Stability of Lipophobic Colloids 1948 (Elsevier: Amsterdam).

[49]  J. Labille, F. Thomas, I. Bihannic, C. Santaella, Destabilization of montmorillonite suspensions by Ca2+ and succinoglycan. Clay Miner. 2003, 38, 173.
Destabilization of montmorillonite suspensions by Ca2+ and succinoglycan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1Krsb4%3D&md5=9db1c248e069633eb82e2fa542cb5a0dCAS |

[50]  F. Thomas, B. Prélot, F. Villiéras, J.-M. Cases, Electrochemical properties of solids at the aqueous–solid interface and heterogeneity of surface. C. R. Geosci. 2002, 334, 633.
Electrochemical properties of solids at the aqueous–solid interface and heterogeneity of surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1CisLY%3D&md5=e6c53e642f598338f230efbc80c36444CAS |

[51]  A. Blum, A. Lasaga, The role of surface speciation in the dissolution of albite. Geochim. Cosmochim. Acta 1991, 55, 2193.
The role of surface speciation in the dissolution of albite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXls1eiu7k%3D&md5=98c900a4d0019c200d69b942d5337202CAS |

[52]  H. van Olphen, Electric double layer structure and stability of clay suspensions, in An Introduction to Clay Colloid Chemistry 1977, pp. 89–108 (Wiley: New York).

[53]  R. Jellander, S. Marčelja, J. Quirk, Attractive double-layer interactions between calcium clay particles. J. Colloid Interface Sci. 1988, 126, 194.
Attractive double-layer interactions between calcium clay particles.Crossref | GoogleScholarGoogle Scholar |

[54]  F. Thomas, L. J. Michot, D. Vantelon, E. Montargès, B. Prélot, M. Cruchaudet, J. F. Delon, Layer charge and electrophoretic mobility of smectites. Colloids Surf. A Physicochem. Eng. Asp. 1999, 159, 351.
Layer charge and electrophoretic mobility of smectites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFerurg%3D&md5=720a42190a8feea251c0d3820c836eb3CAS |

[55]  M. Perronnet, F. Villiéras, M. Jullien, A. Razafitianamaharavo, J. Raynal, D. Bonnin, Towards a link between the energetic heterogeneities of the edge faces of smectites and their stability in the context of metallic corrosion. Geochim. Cosmochim. Acta 2007, 71, 1463.
Towards a link between the energetic heterogeneities of the edge faces of smectites and their stability in the context of metallic corrosion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Gjs74%3D&md5=fd0d4de439085f6b705c82ecea7d0e4fCAS |

[56]  J.-Y. Bottero, M. Bruant, J. Cases, D. Canet, F. Fiessinger, Adsorption of non-ionic polyacrylamide on sodium montmorillonite: relation between adsorption, ξ potential, turbidity, enthalpy of adsorption data and 13C-NMR in aqueous solution. J. Colloid Interface Sci. 1988, 124, 515.
Adsorption of non-ionic polyacrylamide on sodium montmorillonite: relation between adsorption, ξ potential, turbidity, enthalpy of adsorption data and 13C-NMR in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlslOhsLo%3D&md5=21ba8e7405d81cf6d01bd78a3deaf427CAS |

[57]  P. Moulin, H. Roques, Zeta potential measurement of calcium carbonate. J. Colloid Interface Sci. 2003, 261, 115.
Zeta potential measurement of calcium carbonate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1emtLY%3D&md5=b3c6ad68542f9261fc1a30c9b817c47fCAS | 12725831PubMed |

[58]  E. Chibowski, L. Hołysz, W. Wójcik, A collection of papers presented at the International Symposium on Elektrokinetic Phenomena ’93. Changes in zeta potential and surface free energy of calcium carbonate due to exposure to radiofrequency electric field. Colloids Surf. A Physicochem. Eng. Asp. 1994, 92, 79.
A collection of papers presented at the International Symposium on Elektrokinetic Phenomena ’93. Changes in zeta potential and surface free energy of calcium carbonate due to exposure to radiofrequency electric field.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFaqtLk%3D&md5=690a6dc263c263edcb101383a6d3b859CAS |

[59]  O. Pokrovsky, J. Schott, F. Thomas, Dolomite surface speciation and reactivity in aquatic systems. Geochim. Cosmochim. Acta 1999, 63, 3133.
Dolomite surface speciation and reactivity in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVClurs%3D&md5=141f27e1ac9929829cd5e984ebc41c7aCAS |

[60]  D. Slomberg, M. Schoenfisch, Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ. Sci. Technol. 2012, 46, 10247.
| 1:CAS:528:DC%2BC38XhtFOru7bK&md5=d98815ecb7bd961b15f989a7ca3b7d35CAS | 22889047PubMed |