Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Dialkylsulfate formation in sulfuric acid-seeded secondary organic aerosol produced using an outdoor chamber under natural sunlight

Jiaying Li A , Myoseon Jang A B and Ross L. Beardsley A
+ Author Affiliations
- Author Affiliations

A Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611, USA.

B Corresponding author. Email: mjang@ufl.edu

Environmental Chemistry 13(4) 590-601 https://doi.org/10.1071/EN15129
Submitted: 1 April 2015  Accepted: 7 September 2015   Published: 16 November 2015

Environmental context. Laboratory and field studies have both provided evidence for organosulfate formation by esterification of H2SO4 with organic compounds in aerosols. Using an outdoor chamber, the production of dialkylsufate was measured for organic aerosols produced by photooxidation of various hydrocarbons in the presence of H2SO4 aerosol and NOx. The formation of organosulfates influences the decrease of both aerosol acidity and aerosol hygroscopicity.

Abstract. Secondary organic aerosols (SOA) were produced by the photooxidation of the volatile organic hydrocarbons (VOCs) isoprene, α-pinene and toluene, in the presence of excess amounts of sulfuric acid seed aerosol with varying NOx concentrations using a large, outdoor smog chamber. Aerosol acidity ([H+], μmol m–3) was measured using colorimetry integrated with a reflectance UV-visible spectrometer (C-RUV). The C-RUV technique measures aerosol acidity changes through the neutralisation of sulfuric acid with ammonia and the formation of dialkylsulfate, a diester of sulfuric acid. The concentration (μmol m–3) of dialkylsulfate in aerosol was estimated using the difference in [H+] obtained from C-RUV and particle-into-liquid-sampler ion chromatography (PILS-IC). The yield of dialkylsulfate (YdiOS) was defined as the dialkylsulfate concentration normalised by the concentrations of both the ammonium-free sulfate ([SO42–]free = [SO42–] – 0.5 [NH4+]) and organic carbon. The highest YdiOS appeared in isoprene SOA and the lowest YdiOS in α-pinene SOA. Under our experimental conditions, more than 50 % of the total sulfates in sulfuric acid-seeded isoprene SOA were dialkylsulfates. For all SOA, higher YdiOS was observed under higher NOx conditions (VOC (ppb C)/NO (ppb) < 15). Among the major functional groups (–COOH, –CO–H, –CHO and –ONO2) predicted to be present using a simple absorptive partitioning model of organic products in the multiphase system (gas, organic aerosol and inorganic aerosol), the concentrations of –CO–H, –CHO and –ONO2 groups were found to be correlated with YdiOS. In particular, a strong correlation was observed between YdiOS and the concentration of alcohol functional groups.


References

[1]  M. Jang, N. M. Czoschke, S. Lee, R. M. Kamens, Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 2002, 298, 814.
Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions.CrossRef | 1:CAS:528:DC%2BD38XotFSntLk%3D&md5=eb0ada83e72e5e029bbd28a4d0043761CAS | 12399587PubMed |

[2]  M. Kalberer, D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, U. Baltensperger, Identification of polymers as major components of atmospheric organic aerosols. Science 2004, 303, 1659.
Identification of polymers as major components of atmospheric organic aerosols.CrossRef | 1:CAS:528:DC%2BD2cXhvFCnsbc%3D&md5=1ed8b330c2b4b5eea792da063f199ee2CAS | 15016998PubMed |

[3]  N. M. Czoschke, M. Jang, R. M. Kamens, Effect of acidic seed on biogenic secondary organic aerosol growth. Atmos. Environ. 2003, 37, 4287.
Effect of acidic seed on biogenic secondary organic aerosol growth.CrossRef | 1:CAS:528:DC%2BD3sXms1Smsr8%3D&md5=619973277bba1b5ef2c11cfdccc93bfaCAS |

[4]  J. D. Surratt, M. Lewandowski, J. H. Offenberg, M. Jaoui, T. E. Kleindienst, E. O. Edney, J. H. Seinfeld, Effect of acidity on secondary organic aerosol formation from isoprene. Environ. Sci. Technol. 2007, 41, 5363.
Effect of acidity on secondary organic aerosol formation from isoprene.CrossRef | 1:CAS:528:DC%2BD2sXmvFeisrc%3D&md5=ace33254fddb74139b3146ae6b17efe4CAS | 17822103PubMed |

[5]  G. Cao, M. Jang, An SOA model for toluene oxidation in the presence of inorganic aerosols. Environ. Sci. Technol. 2010, 44, 727.
An SOA model for toluene oxidation in the presence of inorganic aerosols.CrossRef | 1:CAS:528:DC%2BD1MXhsFOisrzJ&md5=eff06984c9447da0b946d4dd8f597741CAS | 20017537PubMed |

[6]  E. C. Minerath, M. T. Casale, M. J. Elrod, Kinetics feasibility study of alcohol sulfate esterification reactions in tropospheric aerosols. Environ. Sci. Technol. 2008, 42, 4410.
Kinetics feasibility study of alcohol sulfate esterification reactions in tropospheric aerosols.CrossRef | 1:CAS:528:DC%2BD1cXlslOju7Y%3D&md5=6f602f03a253df6ba20916ad052589e4CAS | 18605563PubMed |

[7]  N. C. Eddingsaas, C. L. Loza, L. D. Yee, M. Chan, K. A. Schilling, P. S. Chhabra, J. H. Seinfeld, P. O. Wennberg, α-Pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NOx environments. Atmos. Chem. Phys. 2012, 12, 7413.
α-Pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NOx environments.CrossRef | 1:CAS:528:DC%2BC38Xhsleru7fF&md5=cdb88fb2ddbd34f03eeccafd727240f8CAS |

[8]  H. Zhang, D. R. Worton, M. Lewandowski, J. Ortega, C. L. Rubitschun, J.-H. Park, K. Kristensen, P. Campuzano-Jost, D. A. Day, J. L. Jimenez, M. Jaoui, J. H. Offenberg, T. E. Kleindienst, J. Gilman, W. C. Kuster, J. de Gouw, C. Park, G. W. Schade, A. A. Frossard, L. Russell, L. Kaser, W. Jud, A. Hansel, L. Cappellin, T. Karl, M. Glasius, A. Guenther, A. H. Goldstein, J. H. Seinfeld, A. Gold, R. M. Kamens, J. D. Surratt, Organosulfates as tracers for secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) in the atmosphere. Environ. Sci. Technol. 2012, 46, 9437.
Organosulfates as tracers for secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) in the atmosphere.CrossRef | 1:CAS:528:DC%2BC38XhtFWhs7nM&md5=c56e6155525650faa5ae52be00a3d4a5CAS | 22849588PubMed |

[9]  J. Liggio, S.-M. Li, R. McLaren, Heterogeneous reactions of glyoxal on particulate matter: identification of acetals and sulfate esters. Environ. Sci. Technol. 2005, 39, 1532.
Heterogeneous reactions of glyoxal on particulate matter: identification of acetals and sulfate esters.CrossRef | 1:CAS:528:DC%2BD2MXmtVSgsA%3D%3D&md5=bee83809b7b66399b218e4a27bc9b647CAS | 15819206PubMed |

[10]  Y. Iinuma, O. Boege, A. Kahnt, H. Herrmann, Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides. Phys. Chem. Chem. Phys. 2009, 11, 7985.
Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides.CrossRef | 1:CAS:528:DC%2BD1MXhtVOrsL%2FO&md5=d4646bd8bca915b1d9f2f9dfc010c2b0CAS | 19727505PubMed |

[11]  V. Lal, A. F. Khalizov, Y. Lin, M. D. Galvan, B. T. Connell, R. Zhang, Heterogeneous reactions of epoxides in acidic media. J. Phys. Chem. A 2012, 116, 6078.
Heterogeneous reactions of epoxides in acidic media.CrossRef | 1:CAS:528:DC%2BC38XhvVSku78%3D&md5=fac9adec327bb894a35e1d28b5a24db4CAS | 22309032PubMed |

[12]  J. D. Surratt, A. W. H. Chan, N. C. Eddingsaas, M. Chan, C. L. Loza, A. J. Kwan, et al. Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA 2010, 107, 6640.
Reactive intermediates revealed in secondary organic aerosol formation from isoprene.CrossRef | 1:CAS:528:DC%2BC3cXltFSjsL0%3D&md5=6ad0cda2e25f9d6472253b39009f158bCAS | 20080572PubMed |

[13]  M. M. Galloway, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, R. C. Flagan, J. H. Seinfeld, F. N. Keutsch, Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmos. Chem. Phys. 2009, 9, 3331.
Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions.CrossRef | 1:CAS:528:DC%2BD1MXos1amsb4%3D&md5=78c41ae491be60d3ec262332cb7bbedbCAS |

[14]  B. Nozière, S. Ekström, T. Alsberg, S. Holmström, Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys. Res. Lett. 2010, 37, L05806.
Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols.CrossRef |

[15]  J. D. Surratt, J. H. Kroll, T. E. Kleindienst, E. O. Edney, M. Claeys, A. Sorooshian, N. L. Ng, J. H. Offenberg, M. Lewandowski, M. Jaoui, R. C. Flagan, J. H. Seinfeld, Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 517.
Evidence for organosulfates in secondary organic aerosol.CrossRef | 1:CAS:528:DC%2BD28Xht1OmsLzM&md5=7f982cee0787edd69cd78a8fab595badCAS | 17310716PubMed |

[16]  L. E. Hatch, J. M. Creamean, A. P. Ault, J. D. Surratt, M. N. Chan, J. H. Seinfeld, E. S. Edgerton, Y. Su, K. A. Prather, Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry – Part 1: single-particle atmospheric observations in Atlanta. Environ. Sci. Technol. 2011, 45, 5105.
Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry – Part 1: single-particle atmospheric observations in Atlanta.CrossRef | 1:CAS:528:DC%2BC3MXmtlCrsLo%3D&md5=7f2a9b15bd5ba76c7c427148681d6a69CAS | 21604734PubMed |

[17]  Y. Gómez-González, J. D. Surratt, F. Cuyckens, R. Szmigielski, R. Vermeylen, M. Jaoui, M. Lewandowski, J. H. Offenberg, T. E. Kleindienst, E. O. Edney, F. Blockhuys, C. Van Alsenoy, W. Maenhaut, M. Claeys, Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(–) electrospray ionization mass spectrometry. J. Mass Spectrom. 2008, 43, 371.
Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(–) electrospray ionization mass spectrometry.CrossRef | 17968849PubMed |

[18]  Y. Iinuma, C. Mueller, T. Berndt, O. Boege, M. Claeys, H. Herrmann, Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 6678.
Evidence for the existence of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol.CrossRef | 1:CAS:528:DC%2BD2sXpvVCntLo%3D&md5=333db94b78682e242a1f53f6afb73d81CAS | 17969680PubMed |

[19]  K. Kristensen, M. Glasius, Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in north-west Europe during spring. Atmos. Environ. 2011, 45, 4546.
Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in north-west Europe during spring.CrossRef | 1:CAS:528:DC%2BC3MXpt1ahsbc%3D&md5=fe0781976f35b5b8a485a29a1d521b73CAS |

[20]  E. A. Stone, L. Yang, L. E. Yu, M. Rupakheti, Characterization of organosulfates in atmospheric aerosols at four Asian locations. Atmos. Environ. 2012, 47, 323.
Characterization of organosulfates in atmospheric aerosols at four Asian locations.CrossRef | 1:CAS:528:DC%2BC3MXhs1KrtbrL&md5=191d5a400f4b5acfb08d0dad9c1f35d3CAS |

[21]  Y. Ma, X. Xu, W. Song, F. Geng, L. Wang, Seasonal and diurnal variations of particulate organosulfates in urban Shanghai, China. Atmos. Environ. 2014, 85, 152.
Seasonal and diurnal variations of particulate organosulfates in urban Shanghai, China.CrossRef | 1:CAS:528:DC%2BC2cXhtFOiu74%3D&md5=2fdcce71864bde0a232daf9ba837383aCAS |

[22]  K. E. Altieri, B. J. Turpin, S. P. Seitzinger, Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high-resolution electrospray ionization FT-ICR mass spectrometry. Atmos. Chem. Phys. 2009, 9, 2533.
Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high-resolution electrospray ionization FT-ICR mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1MXmvVGjtbc%3D&md5=de8256448a1cba715241c89310f59f5cCAS |

[23]  K. M. Shakya, R. E. Peltier, Non-sulfate sulfur in fine aerosols across the United States: insight for organosulfate prevalence. Atmos. Environ. 2015, 100, 159.
Non-sulfate sulfur in fine aerosols across the United States: insight for organosulfate prevalence.CrossRef | 1:CAS:528:DC%2BC2cXhvVGhsbzI&md5=b82ba3281588e368db6d0809b6cf85e0CAS |

[24]  R. E. Kirk, D. F. Othmer, J. I. Kroschwitz, M. Howe-Grant, Encyclopedia of Chemical Technology 1991 (Wiley: New York).

[25]  D. K. Farmer, A. Matsunaga, K. S. Docherty, J. D. Surratt, J. H. Seinfeld, R. J. Ziemann, J. L. Jimenez, Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proc. Natl. Acad. Sci. USA 2010, 107, 6670.
Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.CrossRef | 1:CAS:528:DC%2BC3cXltFSjsbs%3D&md5=89e8202bdf8e77bb1d5497358a1c05aaCAS | 20194777PubMed |

[26]  J. F. King, Chapter 6: Acidity in Sulphonic Acids, Esters and their Derivatives (Ed. Z. R. Saul Patai) 2006, pp. 249–259 (Wiley: Chichester, UK).

[27]  M. Jang, G. Cao, J. Paul, Colorimetric particle acidity analysis of secondary organic aerosol coating on submicron acidic aerosols. Aerosol Sci. Technol. 2008, 42, 409.
Colorimetric particle acidity analysis of secondary organic aerosol coating on submicron acidic aerosols.CrossRef | 1:CAS:528:DC%2BD1cXnsFChurw%3D&md5=e50aec8d163219c85b32880f04aaa202CAS |

[28]  J. Li, M. Jang, Aerosol acidity measurement using colorimetry coupled with a reflectance UV-visible spectrometer. Aerosol Sci. Technol. 2012, 46, 833.
Aerosol acidity measurement using colorimetry coupled with a reflectance UV-visible spectrometer.CrossRef | 1:CAS:528:DC%2BC38XntlWisrw%3D&md5=cadc93c88187cf62b513aad0201736c7CAS |

[29]  D. A. Orsini, Y. Ma, A. Sullivan, B. Sierau, K. Baumann, R. J. Weber, Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water-soluble aerosol composition. Atmos. Environ. 2003, 37, 1243.
Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water-soluble aerosol composition.CrossRef | 1:CAS:528:DC%2BD3sXhslGqtr4%3D&md5=2812c7a34be57e23cfbb578211946731CAS |

[30]  R. J. Weber, D. Orsini, Y. Daun, Y. N. Lee, P. J. Klotz, F. Brechtel, A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Sci. Technol. 2001, 35, 718.
A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition.CrossRef | 1:CAS:528:DC%2BD3MXmvVyqtLc%3D&md5=3b8224c27eceb3adf655a51905ab6c32CAS |

[31]  Y. Im, M. Jang, R. Beardsley, Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions. Atmos. Chem. Phys. 2014, 13, 5843.
Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions.CrossRef |

[32]  M. Jang, R. M. Kamens, Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environ. Sci. Technol. 2001, 35, 4758.
Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst.CrossRef | 1:CAS:528:DC%2BD3MXotFOnsLk%3D&md5=91ad137ea19f2369c5a5bf4c38f653a1CAS | 11775150PubMed |

[33]  J. Jang, M. Jang, W. Mui, A. D. Carrie, V. H. Michael, H. John, Formation of active chlorine oxidants in saline Oxone aerosol. Aerosol Sci. Technol. 2010, 44, 1018.
Formation of active chlorine oxidants in saline Oxone aerosol.CrossRef | 1:CAS:528:DC%2BC3cXhtFKht77N&md5=c9edf43d7b5405e03534f1b3631eb058CAS |

[34]  A. K. Bertram, S. T. Martin, S. J. Hanna, M. L. Smith, A. Bodsworth, Q. Chen, M. Kuwata, A. Liu, Y. You, S. R. Zorn, Predicting the relative humidities of liquid–liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. Atmos. Chem. Phys. 2011, 11, 10 995.
Predicting the relative humidities of liquid–liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component.CrossRef | 1:CAS:528:DC%2BC38XisFOis7g%3D&md5=1430151b447693cd1978c1256353bddcCAS |

[35]  S. L. Clegg, P. Brimblecombe, A. S. Wexler, Thermodynamic model of the system H+–NH4+–SO42–NO3–H2O at tropospheric temperatures. J. Phys. Chem. A 1998, 102, 2137.
Thermodynamic model of the system H+–NH4+–SO42–NO3–H2O at tropospheric temperatures.CrossRef | 1:CAS:528:DyaK1cXhtlekt7Y%3D&md5=a2284b8ced63ca82efd0d0272c608f39CAS |

[36]  M. Shiraiwa, M. Ammann, T. Koop, U. Poschl, Gas uptake and chemical aging of semisolid organic aerosol particles. P. Natl Acad. Sci. USA 2011, 108, 11 003.
Gas uptake and chemical aging of semisolid organic aerosol particles.CrossRef | 1:CAS:528:DC%2BC3MXptV2ht7o%3D&md5=8fe1927366a6d54264178a38c3536baaCAS |

[37]  P. H. McMurry, D. Grosjean, Gas and aerosol wall losses in Teflon film smog chambers. Environ. Sci. Technol. 1985, 19, 1176.
Gas and aerosol wall losses in Teflon film smog chambers.CrossRef | 1:CAS:528:DyaL2MXmtVSiur8%3D&md5=9c44f229f6c3c1a1c1dc9744384699a7CAS | 22280133PubMed |

[38]  N. P. Levitt, J. Zhao, R. Zhang, Heterogeneous chemistry of butanol and decanol with sulfuric acid: implications for secondary organic aerosol formation. J. Phys. Chem. A 2006, 110, 13 215.
Heterogeneous chemistry of butanol and decanol with sulfuric acid: implications for secondary organic aerosol formation.CrossRef | 1:CAS:528:DC%2BD28XhtF2gt7nO&md5=13fc8f32b76c596038ed2c385230d058CAS |

[39]  S. L. Clegg, J. H. Seinfeld, P. Brimblecombe, Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. J. Aerosol Sci. 2001, 32, 713.
Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds.CrossRef | 1:CAS:528:DC%2BD3MXjtFehtLg%3D&md5=9d56daa2cf8bcf830ec70314dc73bb06CAS |

[40]  E. I. Chang, J. F. Pankow, Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water – Part 2: consideration of phase separation effects by an X-UNIFAC model. Atmos. Environ. 2006, 40, 6422.
Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water – Part 2: consideration of phase separation effects by an X-UNIFAC model.CrossRef | 1:CAS:528:DC%2BD28Xpt1ynsb4%3D&md5=98fe2055d8720e790176b1e8174566d7CAS |

[41]  V. G. Ciobanu, C. Marcolli, U. K. Krieger, U. Weers, T. Peter, Liquid–liquid phase separation in mixed organic/inorganic aerosol particles. J. Phys. Chem. A 2009, 113, 10966.
Liquid–liquid phase separation in mixed organic/inorganic aerosol particles.CrossRef | 1:CAS:528:DC%2BD1MXhtFKktLfL&md5=e1cc631f3356b4565a88c80cf10a1f80CAS | 19775109PubMed |

[42]  M. Song, C. Marcolli, U. K. Krieger, A. Zuend, T. Peter, Liquid–liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles. Atmos. Chem. Phys. 2012, 12, 2691.
Liquid–liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles.CrossRef | 1:CAS:528:DC%2BC38Xpt12hsL8%3D&md5=32d513c7bd15b7693e9493d9d2e03dcdCAS |

[43]  A. Zuend, J. H. Seinfeld, Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid–liquid phase separation. Atmos. Chem. Phys. 2012, 12, 3857.
Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid–liquid phase separation.CrossRef | 1:CAS:528:DC%2BC38XhtFOns73P&md5=50605e5e088054d39059af89d2b1dcd1CAS |

[44]  M. E. Jenkin, S. M. Saunders, V. Wagner, M. J. Pilling, Protocol for the development of the master chemical mechanism, MCM v3 (part B): tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 181.
Protocol for the development of the master chemical mechanism, MCM v3 (part B): tropospheric degradation of aromatic volatile organic compounds.CrossRef | 1:CAS:528:DC%2BD3sXns1Sntrw%3D&md5=99f88404c902140a2808dbc653e85b49CAS |

[45]  J. F. Pankow, An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ. 1994, 28, 189.
An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol.CrossRef | 1:CAS:528:DyaK2cXisFajs7w%3D&md5=2ff34c500e56575c22295f1267051390CAS |

[46]  A. F. M. Barton, Handbook of Solubility Parameters and Other Cohesion Parameters 1991 (CRC Press: Boston, MA).

[47]  A. Zuend, C. Marcolli, A. M. Booth, D. M. Lienhard, V. Soonsin, U. K. Krieger, D. O. Topping, G. McFiggans, T. Peter, J. H. Seinfeld, New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic–inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 2011, 11, 9155.
New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic–inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups.CrossRef | 1:CAS:528:DC%2BC3MXhsVyju7fK&md5=c7bf6cdf64e7bc0846ba49d5d3b308c6CAS |

[48]  N. C. Deno, M. S. Newman, Mechanism of sulfation of alcohols. J. Am. Chem. Soc. 1950, 72, 3852.
Mechanism of sulfation of alcohols.CrossRef | 1:CAS:528:DC%2BD1MXhtV2mtLrN&md5=a1f0407e002730d5b764530aee534e0dCAS |

[49]  J. F. Hamilton, M. R. Alfarra, N. Robinson, M. W. Ward, A. C. Lewis, G. B. McFiggans, H. Coe, J. D. Allan, Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest. Atmos. Chem. Phys. 2013, 13, 11 295.
Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest.CrossRef | 1:CAS:528:DC%2BC2cXhvFaksb8%3D&md5=3d7751bab3e16d6a752bdaad2038d07dCAS |

[50]  K. S. Hu, A. I. Darer, M. J. Elrod, Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates. Atmos. Chem. Phys. 2011, 11, 8307.
Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates.CrossRef | 1:CAS:528:DC%2BC3MXhsVyju7rJ&md5=b625b8893b0eb7df9406d78d73916feaCAS |

[51]  A. I. Darer, N. C. Cole-Filipiak, A. E. O’Connor, M. J. Elrod, Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates. Environ. Sci. Technol. 2011, 45, 1895.
Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates.CrossRef | 1:CAS:528:DC%2BC3MXhsFGnsL4%3D&md5=566c5aff7bbf962b2743513790f3de6cCAS | 21291229PubMed |

[52]  K. W. Loeffler, C. A. Koehler, N. M. Paul, D. O. De Haan, Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions. Environ. Sci. Technol. 2006, 40, 6318.
Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions.CrossRef | 1:CAS:528:DC%2BD28Xptlelu7k%3D&md5=a5016ab07cefd48ae7d875279d4b144dCAS | 17120559PubMed |

[53]  A. Virtanen, J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirilae, J. Leskinen, J. M. Maekelae, J. K. Holopainen, U. Poeschl, M. Kulmala, D. R. Worsnop, A. Laaksonen, An amorphous solid state of biogenic secondary organic aerosol particles. Nature 2010, 467, 824.
An amorphous solid state of biogenic secondary organic aerosol particles.CrossRef | 1:CAS:528:DC%2BC3cXht1yhsLnN&md5=8661fc66c8d699ea074a2f1c94f2e98bCAS | 20944744PubMed |

[54]  T. P. Riedel, Y.-H. Lin, S. H. Budisulistiorini, C. J. Gaston, J. A. Thornton, Z. Zhang, W. Vizuete, A. Gold, J. D. Surratt, Heterogeneous reactions of isoprene-derived epoxides: reaction probabilities and molar secondary organic aerosol yield estimates. Environ. Sci. Technol. Lett. 2015, 2, 38.
Heterogeneous reactions of isoprene-derived epoxides: reaction probabilities and molar secondary organic aerosol yield estimates.CrossRef | 1:CAS:528:DC%2BC2MXoslCmsg%3D%3D&md5=8dc0169692be452c4cad4e7693c85ddfCAS |

[55]  T. B. Nguyen, M. M. Coggon, K. H. Bates, X. Zhang, R. H. Schwantes, K. A. Schilling, C. L. Loza, R. C. Flagan, P. O. Wennberg, J. H. Seinfeld, Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds. Atmos. Chem. Phys. 2014, 14, 3497.
Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds.CrossRef |

[56]  I. R. Piletic, E. O. Edney, L. J. Bartolotti, A computational study of acid-catalyzed aerosol reactions of atmospherically relevant epoxides. Phys. Chem. Chem. Phys. 2013, 15, 18 065.
A computational study of acid-catalyzed aerosol reactions of atmospherically relevant epoxides.CrossRef | 1:CAS:528:DC%2BC3sXhsFCrtLvE&md5=351cc4532b228e15dbec59e88ad9b64cCAS |

[57]  J. Rice, W. Moore, R. Mcallister, E. Bowlex, 1989 National Urban Air Toxics Monitoring Program, in Proceedings 83rd A&WMA Annual Meeting, 24–29 June 1990, Pittsburgh, PA, USA 1990 (Air & Waste Management Association: Pittsburgh, PA).

[58]  M. Dougherty, D. Shelow, 2012 National Monitoring Programs annual report (UATMP, NATTS, CSATAM). EPA-454/R-14-006a; EPA-454/R-14-006b 2014 (US Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division: Research Triangle Park, NC).

[59]  J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. S. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, A. M. Middlebrook, C. E. Kolb, U. Baltensperger, D. R. Worsnop, Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525.
Evolution of organic aerosols in the atmosphere.CrossRef | 1:CAS:528:DC%2BD1MXhsFensbjE&md5=c3636aee5b12ef35018bea4b1df7232dCAS | 20007897PubMed |

[60]  R. K. Pathak, W. S. Wu, T. Wang, Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 2009, 9, 1711.
Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere.CrossRef | 1:CAS:528:DC%2BD1MXntFKgsrk%3D&md5=80ee831f68cd4a7cf071e599e6b9fcb0CAS |

[61]  H. Le Chatelier, O. Oudouard, Limits of flammability of gaseous mixtures. Bull. Soc. Chim. Fr. 1898, 19, 483.



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (1.9 MB) Export Citation Cited By (1)