Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Biochar amendment altered the molecular-level composition of native soil organic matter in a temperate forest soil

Perry J. Mitchell A B , André J. Simpson A B , Ronald Soong B and Myrna J. Simpson A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.

B Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.

C Corresponding author. Email: myrna.simpson@utoronto.ca

Environmental Chemistry 13(5) 854-866 https://doi.org/10.1071/EN16001
Submitted: 2 January 2016  Accepted: 3 May 2016   Published: 8 June 2016

Environmental context. Biochar amendment in soil can sequester carbon but may also stimulate microbial activity, potentially enhancing soil organic matter degradation. We incubated biochar in a temperate forest soil and characterised the soil organic matter composition using molecular-level biomarker and nuclear magnetic resonance techniques. Biochar amendment altered the native soil organic matter composition and decreased the concentration of easily degradable soil organic matter components.

Abstract. Biochar amendment in soil can sequester carbon and improve soil water and nutrient retention, fertility and plant productivity. However, biochar may stimulate microbial activity, leading to priming or accelerated soil organic matter (OM) degradation, which could alter the native soil OM molecular composition. To investigate this, we amended sugar maple wood biochar (pyrolysed at 500 °C) at four concentrations (0, 5, 10 and 20 metric tons per hectare) in a temperate forest soil for 32 weeks. Solvent extraction and CuO oxidation were used to characterise free compounds and lignin-derived phenols respectively at 8 week intervals, while base hydrolysis was used to examine plant wax, cutin and suberin components at the end of the incubation. Stimulated soil microbial activity following an adaptation period (16 weeks) resulted in increased inputs of microbial- and plant-derived soil OM components including solvent-extractable short-chain n-alkanols and n-alkanoic acids, long-chain n-alkanes and n-alkanols, and sugars. Degradation parameters for base-hydrolysable cutin- and suberin-derived compounds did not show any significant degradation of these plant biopolymers. Analysis of lignin-derived phenols revealed lower concentrations of extractable phenols and progressive oxidation of syringyl and vanillyl phenols at higher biochar application rates over time. Solution-state 1H nuclear magnetic resonance analysis of base-extractable soil OM after 32 weeks showed a decrease in the proportion of labile OM components such as carbohydrates and peptides and a relative increase in more recalcitrant polymethylene OM constituents in the amended soils. The biochar-mediated shifts in soil OM composition and reduction in labile carbon may reduce soil fertility in biochar-amended systems with long-term amendment.

Additional keywords: biomarker, cutin, lignin, nuclear magnetic resonance, suberin.


References

[1]  S. A. McCormack, N. Ostle, R. D. Bardgett, D. W. Hopkins, A. J. Vanbergen, Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes. GCB Bioenergy 2013, 5, 81.
Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes.CrossRef | 1:CAS:528:DC%2BC3sXmsVCku7k%3D&md5=d0bc155d5325b6a4cd5339ce4a150e46CAS |

[2]  J. Lehmann, S. Joseph, Biochar for environmental management: an introduction, in Biochar for Environmental Management: Science and Technology (Eds J. Lehmann, S. Joseph) 2009, pp. 1–12 (Earthscan: London, UK). 10.4324/9781849770552

[3]  C. I. Kammann, H. P. Schmidt, N. Messerschmidt, S. Linsel, D. Steffens, C. Müller, H. W. Koyro, P. Conte, S. Joseph, Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080.
Plant growth improvement mediated by nitrate capture in co-composted biochar.CrossRef | 26057083PubMed |

[4]  H. P. Schmidt, B. H. Pandit, V. Martinsen, G. Cornelissen, P. Conte, C. I. Kammann, Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 2015, 5, 723.
Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil.CrossRef |

[5]  J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, D. Crowley, Biochar effects on soil biota – a review. Soil Biol. Biochem. 2011, 43, 1812.
Biochar effects on soil biota – a review.CrossRef | 1:CAS:528:DC%2BC3MXhtVWrt7fI&md5=c11a501e8964c1f13c988d23f1425669CAS |

[6]  G. Cimò, J. Kucerik, A. E. Berns, G. E. Schaumann, G. Alonzo, P. Conte, Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure. J. Agric. Food Chem. 2014, 62, 1912.
Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure.CrossRef | 24506474PubMed |

[7]  C. L. M. Khodadad, A. R. Zimmerman, S. J. Green, S. Uthandi, J. S. Foster, Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol. Biochem. 2011, 43, 385.
Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments.CrossRef | 1:CAS:528:DC%2BC3MXhtlGmtA%3D%3D&md5=57568056fec860ca14e1dbaec53a34e2CAS |

[8]  C. Prayogo, J. E. Jones, J. Baeyens, G. D. Bending, Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol. Fertil. Soils 2014, 50, 695.
Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure.CrossRef | 1:CAS:528:DC%2BC2cXmvFCmsbc%3D&md5=1758c197cc8bb7a2822991f62fe44a3bCAS |

[9]  A. Watzinger, S. Feichtmair, B. Kitzler, F. Zehetner, S. Kloss, B. Wimmer, S. Zechmeister-Boltenstern, G. Soja, Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment. Eur. J. Soil Sci. 2014, 65, 40.
Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment.CrossRef | 1:CAS:528:DC%2BC2cXnt1egug%3D%3D&md5=7fb1551c0e5e139f4658d581f56714a5CAS |

[10]  J. D. Gomez, K. Denef, C. E. Stewart, J. Zheng, M. F. Cotrufo, Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur. J. Soil Sci. 2014, 65, 28.
Biochar addition rate influences soil microbial abundance and activity in temperate soils.CrossRef | 1:CAS:528:DC%2BC2cXnt1ensg%3D%3D&md5=270f36b45ba0789c9b73d00cfc848459CAS |

[11]  S. Steinbeiss, G. Gleixner, M. Antonietti, Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem. 2009, 41, 1301.
Effect of biochar amendment on soil carbon balance and soil microbial activity.CrossRef | 1:CAS:528:DC%2BD1MXmtVGkurc%3D&md5=4e9392941b1edf5e1d49c13cc8cd89d4CAS |

[12]  G. Baiamonte, C. De Pasquale, V. Marsala, G. Cimò, G. Alonzo, G. Crescimanno, P. Conte, Structure alteration of a sandy-clay soil by biochar amendments. J. Soils Sediments 2015, 15, 816.
Structure alteration of a sandy-clay soil by biochar amendments.CrossRef | 1:CAS:528:DC%2BC2cXhsVSisbjP&md5=611b28865706a431679af3dfd704ba99CAS |

[13]  A. S. Basso, F. E. Miguez, D. A. Laird, R. Horton, M. Westgate, Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132.
Assessing potential of biochar for increasing water-holding capacity of sandy soils.CrossRef | 1:CAS:528:DC%2BC3sXmsVCrsrg%3D&md5=8b60568bcbb28b2a7369ee50050a0c2fCAS |

[14]  X. Domene, S. Mattana, K. Hanley, A. Enders, J. Lehmann, Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol. Biochem. 2014, 72, 152.
Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn.CrossRef | 1:CAS:528:DC%2BC2cXkslKjsro%3D&md5=307e723874d1672cb0aa21dfb36e1401CAS |

[15]  Y. Kuzyakov, J. K. Friedel, K. Stahr, Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485.
Review of mechanisms and quantification of priming effects.CrossRef | 1:CAS:528:DC%2BD3cXntFSmu78%3D&md5=bfcc42bebff97532bf0b83c36dc9bc3eCAS |

[16]  Y. Kuzyakov, Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 2010, 42, 1363.
Priming effects: interactions between living and dead organic matter.CrossRef | 1:CAS:528:DC%2BC3cXptlCrtbc%3D&md5=3c4a05f86210d3bb428c3204d424a7f6CAS |

[17]  A. Cross, S. P. Sohi, The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127.
The priming potential of biochar products in relation to labile carbon contents and soil organic matter status.CrossRef | 1:CAS:528:DC%2BC3MXhtVWku7%2FN&md5=7be274d043fbb489474b4d0029ee36f8CAS |

[18]  A. Keith, B. Singh, B. P. Singh, Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environ. Sci. Technol. 2011, 45, 9611.
Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil.CrossRef | 1:CAS:528:DC%2BC3MXhtlCiurbN&md5=196088ec4be04f3e8e84ce5498a10875CAS | 21950729PubMed |

[19]  D. N. Dempster, D. B. Gleeson, Z. M. Solaiman, D. L. Jones, D. V. Murphy, Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 2012, 354, 311.
Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil.CrossRef | 1:CAS:528:DC%2BC38XlvFWgtbc%3D&md5=9e208bdd877c19920d0b690b906a037aCAS |

[20]  D. L. Jones, J. Rousk, G. Edwards-Jones, T. H. DeLuca, D. V. Murphy, Biochar-mediated changes in soil quality and plant growth in a three-year field trial. Soil Biol. Biochem. 2012, 45, 113.
Biochar-mediated changes in soil quality and plant growth in a three-year field trial.CrossRef | 1:CAS:528:DC%2BC3MXhs1CrtL3P&md5=4ef163384fd76abf00870131d61a23d6CAS |

[21]  N. Ameloot, S. Sleutel, S. D. C. Case, G. Alberti, N. P. McNamara, C. Zavalloni, B. Vervisch, G. delle Vedove, S. De Neve, C mineralization and microbial activity in four biochar field experiments several years after incorporation. Soil Biol. Biochem. 2014, 78, 195.
C mineralization and microbial activity in four biochar field experiments several years after incorporation.CrossRef | 1:CAS:528:DC%2BC2cXhsVSqtrvO&md5=f9428ae5fcea0f603ee3ca6013e1ab91CAS |

[22]  T. Whitman, Z. Zhu, J. Lehmann, Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon. Environ. Sci. Technol. 2014, 48, 13727.
Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon.CrossRef | 1:CAS:528:DC%2BC2cXhvVelurjL&md5=62cf809b74df2fd4ec1494b9279ac9a6CAS | 25361379PubMed |

[23]  M. Zimmermann, M. I. Bird, C. Wurster, G. Saiz, I. Goodrick, J. Barta, P. Capek, H. Santruckova, R. Smernik, Rapid degradation of pyrogenic carbon. Glob. Change Biol. 2012, 18, 3306.
Rapid degradation of pyrogenic carbon.CrossRef |

[24]  N. Ameloot, S. De Neve, K. Jegajeevagan, G. Yildiz, D. Buchan, Y. N. Funkuin, W. Prins, L. Bouckaert, S. Sleutel, Short-term CO2 and N2O emissions and microbial properties of biochar-amended sandy loam soils. Soil Biol. Biochem. 2013, 57, 401.
Short-term CO2 and N2O emissions and microbial properties of biochar-amended sandy loam soils.CrossRef | 1:CAS:528:DC%2BC3sXitVGntLk%3D&md5=331749abf21047981963234abbafca7cCAS |

[25]  A. Otto, M. J. Simpson, Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from western Canada. Biogeochemistry 2005, 74, 377.
Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from western Canada.CrossRef | 1:CAS:528:DC%2BD2MXhtFGlt7vL&md5=cba0d09422b99162ef4455aae71477ccCAS |

[26]  C. R. Anderson, L. M. Condron, T. J. Clough, M. Fiers, A. Stewart, R. A. Hill, R. R. Sherlock, Biochar-induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 2011, 54, 309.
Biochar-induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus.CrossRef | 1:CAS:528:DC%2BC3MXht1ymsrfJ&md5=87e4717995d8d0185bae5f2ce67f9134CAS |

[27]  S. E. Ziegler, S. A. Billings, C. S. Lane, J. Li, M. L. Fogel, Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biol. Biochem. 2013, 60, 23.
Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils.CrossRef | 1:CAS:528:DC%2BC3sXktlKnu74%3D&md5=925750cf7c6d59dc4e9c77b6378fc32aCAS |

[28]  M. V. Lützow, I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, H. Flessa, Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur. J. Soil Sci. 2006, 57, 426.
Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review.CrossRef |

[29]  I. Kögel-Knabner, The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139.
The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter.CrossRef |

[30]  J. Lehmann, A handful of carbon. Nature 2007, 447, 143.
A handful of carbon.CrossRef | 1:CAS:528:DC%2BD2sXltVGktbc%3D&md5=43c9b8a213770b12e8d414e936d76b70CAS | 17495905PubMed |

[31]  P. J. Mitchell, A. J. Simpson, R. Soong, M. J. Simpson, Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol. Biochem. 2015, 81, 244.
Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil.CrossRef | 1:CAS:528:DC%2BC2cXitVWkt7jJ&md5=cec93aa306717055d219c9c32399505dCAS |

[32]  X. Feng, M. J. Simpson, Molecular-level methods for monitoring soil organic matter responses to global climate change. J. Environ. Monit. 2011, 13, 1246.
Molecular-level methods for monitoring soil organic matter responses to global climate change.CrossRef | 1:CAS:528:DC%2BC3MXlsFSgsrc%3D&md5=19ff98baf363fbeb3b98ee71e5d69b44CAS | 21416081PubMed |

[33]  M. J. Simpson, A. J. Simpson, The chemical ecology of soil organic matter molecular constituents. J. Chem. Ecol. 2012, 38, 768.
The chemical ecology of soil organic matter molecular constituents.CrossRef | 1:CAS:528:DC%2BC38Xptl2ltbs%3D&md5=f82c559562e8c09226881b524e883858CAS | 22549555PubMed |

[34]  J. I. Hedges, J. R. Ertel, Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal. Chem. 1982, 54, 174.
Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products.CrossRef | 1:CAS:528:DyaL38XjslWitQ%3D%3D&md5=73fe6d8a63921e8e8507db8bbf342e09CAS |

[35]  A. Otto, M. J. Simpson, Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochemistry 2006, 80, 121.
Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil.CrossRef | 1:CAS:528:DC%2BD28XhtVWhsr%2FI&md5=be74a6326423ca7ff811412a3135ee9cCAS |

[36]  A. Otto, M. J. Simpson, Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Org. Geochem. 2006, 37, 385.
Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada.CrossRef | 1:CAS:528:DC%2BD28Xit1ajtLY%3D&md5=4de7600216edbdf1271a1affe0a45657CAS |

[37]  F. A. Hansel, C. T. Aoki, C. M. B. F. Maia, A. Cunha, R. A. Dedecek, Comparison of two alkaline treatments in the extraction of organic compounds associated with water repellency in soil under Pinus taeda. Geoderma 2008, 148, 167.
Comparison of two alkaline treatments in the extraction of organic compounds associated with water repellency in soil under Pinus taeda.CrossRef | 1:CAS:528:DC%2BD1cXhsVWhtb7K&md5=d18f63115868dfdd3b7ef14d3bfd17c3CAS |

[38]  J. S. Clemente, E. G. Gregorich, A. J. Simpson, R. Kumar, D. Courtier-Murias, M. J. Simpson, Comparison of nuclear magnetic resonance methods for the analysis of organic matter composition from soil density and particle fractions. Environ. Chem. 2012, 9, 97.
Comparison of nuclear magnetic resonance methods for the analysis of organic matter composition from soil density and particle fractions.CrossRef | 1:CAS:528:DC%2BC38Xis1amtbk%3D&md5=432d700a92eec808d870b83b9148ea5bCAS |

[39]  T. Gradowski, S. C. Thomas, Phosphorus limitation of sugar maple growth in central Ontario. For. Ecol. Manage. 2006, 226, 104.
Phosphorus limitation of sugar maple growth in central Ontario.CrossRef |

[40]  G. L. Noyce, N. Basiliko, R. Fulthorpe, T. E. Sackett, S. C. Thomas, Soil microbial responses over 2 years following biochar addition to a north temperate forest. Biol. Fertil. Soils 2015, 51, 649.
Soil microbial responses over 2 years following biochar addition to a north temperate forest.CrossRef | 1:CAS:528:DC%2BC2MXmsFyms7o%3D&md5=9e95e49d575f453941e04296a695b164CAS |

[41]  T. E. Sackett, N. Basiliko, G. L. Noyce, C. Winsborough, J. Schurman, C. Ikeda, S. C. Thomas, Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy 2015, 7, 1062.
Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest.CrossRef | 1:CAS:528:DC%2BC2MXhtlSmtrzP&md5=1e40ed1c297e0630b07a723b482a9404CAS |

[42]  Soil Classification Working Group The Canadian System of Soil Classification 1998 (NRC Research Press: Ottawa, ON).

[43]  R. Calvelo Pereira, J. Kaal, M. Camps Arbestain, R. Pardo Lorenzo, W. Aitkenhead, M. Hedley, F. Macías, J. Hindmarsh, J. A. Maciá-Agulló, Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org. Geochem. 2011, 42, 1331.
Contribution to characterisation of biochar to estimate the labile fraction of carbon.CrossRef | 1:CAS:528:DC%2BC3MXhsVWktrzL&md5=24745c768f828334f8c0fced6e2245e7CAS |

[44]  N. Ameloot, S. Sleutel, K. C. Das, J. Kanagaratnam, S. De Neve, Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. GCB Bioenergy 2015, 7, 135.
Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties.CrossRef | 1:CAS:528:DC%2BC2cXitFGku7nE&md5=8868ac223319fbbb67a54d02988bea3dCAS |

[45]  A. Otto, M. J. Simpson, Analysis of soil organic matter biomarkers by sequential chemical degradation and gas chromatography–mass spectrometry. J. Sep. Sci. 2007, 30, 272.
Analysis of soil organic matter biomarkers by sequential chemical degradation and gas chromatography–mass spectrometry.CrossRef | 1:CAS:528:DC%2BD2sXisVyrtb0%3D&md5=8830c5c0d282a5375ae675c43e20d08dCAS | 17390623PubMed |

[46]  A. Otto, B. R. T. Simoneit, Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochim. Cosmochim. Acta 2001, 65, 3505.
Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany.CrossRef | 1:CAS:528:DC%2BD3MXotVOrurc%3D&md5=625952a725135e4ade8a60eab474522fCAS |

[47]  M. A. Goñi, J. I. Hedges, Lignin dimers: structures, distribution, and potential geochemical applications. Geochim. Cosmochim. Acta 1992, 56, 4025.
Lignin dimers: structures, distribution, and potential geochemical applications.CrossRef |

[48]  D. H. Hunneman, G. Eglinton, The constituent acids of gymnosperm cutins. Phytochemistry 1972, 11, 1989.
The constituent acids of gymnosperm cutins.CrossRef | 1:CAS:528:DyaE38XksVGmsr4%3D&md5=27095e416a7a133fac0b9ad134533a85CAS |

[49]  C. Rumpel, N. Rabia, S. Derenne, K. Quenea, K. Eusterhues, I. Kögel-Knabner, A. Mariotti, Alteration of soil organic matter following treatment with hydrofluoric acid (HF). Org. Geochem. 2006, 37, 1437.
Alteration of soil organic matter following treatment with hydrofluoric acid (HF).CrossRef | 1:CAS:528:DC%2BD28XhtFylurnK&md5=019b80da091570a7d8690d5416c0fe71CAS |

[50]  C. N. Gonçalves, R. S. D. Dalmolin, D. P. Dick, H. Knicker, E. Klamt, I. Kögel-Knabner, The effect of 10 % HF treatment on the resolution of CPMAS 13C NMR spectra and on the quality of organic matter in Ferralsols. Geoderma 2003, 116, 373.
The effect of 10 % HF treatment on the resolution of CPMAS 13C NMR spectra and on the quality of organic matter in Ferralsols.CrossRef |

[51]  W. T. Dixon, J. Schaefer, M. D. Sefcik, E. O. Stejskal, R. A. McKay, Total suppression of sidebands in CPMAS C-13 NMR. J. Magn. Reson. 1982, 49, 341.
Total suppression of sidebands in CPMAS C-13 NMR.CrossRef | 1:CAS:528:DyaL38XlsFGiu7Y%3D&md5=696fd2dd62849b2672882ff140fd6c79CAS |

[52]  A. J. Simpson, M. J. Simpson, E. Smith, B. P. Kelleher, Microbially derived inputs to soil organic matter: are current estimates too low? Environ. Sci. Technol. 2007, 41, 8070.
Microbially derived inputs to soil organic matter: are current estimates too low?CrossRef | 1:CAS:528:DC%2BD2sXhtFGnsLvP&md5=d8ab6d2f567b30a75a0531b7c6ec0c14CAS | 18186339PubMed |

[53]  É. Lichtfouse, G. Berthier, S. Houot, E. Barriuso, V. Bergheaud, T. Vallaeys, Stable carbon isotope evidence for the microbial origin of C14–C18 n-alkanoic acids in soils. Org. Geochem. 1995, 23, 849.
Stable carbon isotope evidence for the microbial origin of C14–C18 n-alkanoic acids in soils.CrossRef | 1:CAS:528:DyaK28Xjs1Whtg%3D%3D&md5=f248b960b8a8ef55e9bba2f223741122CAS |

[54]  J. L. Harwood, N. J. Russell, Lipids in Plants and Microbes 1984 (George Allen and Unwin: London, UK). 10.1007/978-94-011-5989-0

[55]  O. Pisani, K. M. Hills, D. Courtier-Murias, A. J. Simpson, N. J. Mellor, E. A. Paul, S. J. Morris, M. J. Simpson, Molecular-level analysis of long-term vegetative shifts and relationships to soil organic matter composition. Org. Geochem. 2013, 62, 7.
Molecular-level analysis of long-term vegetative shifts and relationships to soil organic matter composition.CrossRef | 1:CAS:528:DC%2BC3sXhtlekt7nK&md5=e5a6287a7b051e1fd511d4a3c8873836CAS |

[56]  A. Frostegård, E. Bååth, The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 1996, 22, 59.
The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil.CrossRef |

[57]  K. A. Spokas, J. M. Novak, C. E. Stewart, K. B. Cantrell, M. Uchimiya, M. G. DuSaire, K. S. Ro, Qualitative analysis of volatile organic compounds on biochar. Chemosphere 2011, 85, 869.
Qualitative analysis of volatile organic compounds on biochar.CrossRef | 1:CAS:528:DC%2BC3MXhsVehsbbM&md5=b557b1ede2a385b502d7a17a509dec15CAS | 21788060PubMed |

[58]  J. L. Deenik, T. McClellan, G. Uehara, M. J. Antal, S. Campbell, Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci. Soc. Am. J. 2010, 74, 1259.
Charcoal volatile matter content influences plant growth and soil nitrogen transformations.CrossRef | 1:CAS:528:DC%2BC3cXovVOjurk%3D&md5=fc68ebbf50f6f9e478c6bb0af95a56e0CAS |

[59]  B. Maestrini, A. M. Herrmann, P. Nannipieri, M. W. I. Schmidt, S. Abiven, Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil. Soil Biol. Biochem. 2014, 69, 291.
Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil.CrossRef | 1:CAS:528:DC%2BC2cXisVKktg%3D%3D&md5=0c8406f14e5ee4926f10423ed9ff9a17CAS |

[60]  A. W. West, W. D. Grant, G. P. Sparling, Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. Soil Biol. Biochem. 1987, 19, 607.
Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations.CrossRef | 1:CAS:528:DyaL2sXlsFegur0%3D&md5=5c84690d3c73cbae54612b4625ad2a72CAS |

[61]  S. E. Hale, J. Lehmann, D. Rutherford, A. R. Zimmerman, R. T. Bachmann, V. Shitumbanuma, A. O’Toole, K. L. Sundqvist, H. P. H. Arp, G. Cornelissen, Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol. 2012, 46, 2830.
Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars.CrossRef | 1:CAS:528:DC%2BC38XitVSntLo%3D&md5=4654a60b3fb14a7c3299714656a0ec0aCAS | 22321025PubMed |

[62]  J. E. Thies, M. C. Rillig, Characteristics of biochar: biological properties, in Biochar for Environmental Management: Science and Technology (Eds J. Lehmann, S. Joseph) 2009, pp. 85–105 (Earthscan: London, UK). 10.4324/9781849770552

[63]  R. S. Quilliam, S. Rangecroft, B. A. Emmett, T. H. Deluca, D. L. Jones, Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? GCB Bioenergy 2013, 5, 96.
Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils?CrossRef | 1:CAS:528:DC%2BC3sXmsVCku7c%3D&md5=39bda40e9e5625b4877b65e59188a868CAS |

[64]  E. C. Hammer, Z. Balogh-Brunstad, I. Jakobsen, P. A. Olsson, S. L. S. Stipp, M. C. Rillig, A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol. Biochem. 2014, 77, 252.
A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces.CrossRef | 1:CAS:528:DC%2BC2cXht12ntL%2FI&md5=99da322fab5dc02b3614cb989cd7e4dfCAS |

[65]  W. C. Hockaday, A. M. Grannas, S. Kim, P. G. Hatcher, Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org. Geochem. 2006, 37, 501.
Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil.CrossRef | 1:CAS:528:DC%2BD28Xit1ajtbs%3D&md5=d329d17984ba54dd2ba1a2b869355024CAS |

[66]  M. Wengel, E. Kothe, C. M. Schmidt, K. Heide, G. Gleixner, Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Sci. Total Environ. 2006, 367, 383.
Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase.CrossRef | 1:CAS:528:DC%2BD28Xnt1yhtbg%3D&md5=f4643475ac63511e9e8d8bfe06f237d4CAS | 16483638PubMed |

[67]  P. L. Ascough, C. J. Sturrock, M. I. Bird, Investigation of growth responses in saprophytic fungi to charred biomass. Isotopes Environ. Health Stud. 2010, 46, 64.
Investigation of growth responses in saprophytic fungi to charred biomass.CrossRef | 1:CAS:528:DC%2BC3cXjt1Wjsrk%3D&md5=a74d8d27c105e8db9f7e90dbcc31ca48CAS | 20229385PubMed |

[68]  A. Otto, C. Shunthirasingham, M. J. Simpson, A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada. Org. Geochem. 2005, 36, 425.
A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada.CrossRef | 1:CAS:528:DC%2BD2MXhtFejurs%3D&md5=b4b79e5b8b6cbfb9e4f151222812359bCAS |

[69]  P. E. Kolattukudy, K. E. Espelie, Chemistry, biochemistry and function of suberin and associated waxes, in Natural Products of Woody Plants (Ed. J. W. Rowe) 1989, pp. 304–367 (Springer: Berlin, Germany). 10.1007/978-3-642-74075-6

[70]  M. Riederer, K. Matzke, F. Ziegler, I. Kögel-Knabner, Occurrence, distribution and fate of the lipid plant biopolymers cutin and suberin in temperate forest soils. Org. Geochem. 1993, 20, 1063.
Occurrence, distribution and fate of the lipid plant biopolymers cutin and suberin in temperate forest soils.CrossRef | 1:CAS:528:DyaK2cXlvFSjsQ%3D%3D&md5=ec06cb2fc9d867d52477417f1861d608CAS |

[71]  M. A. Goñi, J. I. Hedges, Potential applications of cutin-derived CuO reaction products for discriminating vascular plant sources in natural environments. Geochim. Cosmochim. Acta 1990, 54, 3073.
Potential applications of cutin-derived CuO reaction products for discriminating vascular plant sources in natural environments.CrossRef |

[72]  K. Lorenz, R. Lal, C. M. Preston, K. G. J. Nierop, Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 2007, 142, 1.
Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules.CrossRef | 1:CAS:528:DC%2BD2sXhtFels7%2FE&md5=ba38bc99aba501799ee797cd0adaa22fCAS |

[73]  Y. Olshansky, T. Polubesova, B. Chefetz, Reconstitution of cutin monomers on smectite surfaces: adsorption and esterification. Geoderma 2014, 232–234, 406.
Reconstitution of cutin monomers on smectite surfaces: adsorption and esterification.CrossRef |

[74]  S. Derenne, C. Largeau, A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Sci. 2001, 166, 833.
A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments.CrossRef | 1:CAS:528:DC%2BD3MXovVertrY%3D&md5=033986367e2caeded571dba000f7db5eCAS |

[75]  M. Thevenot, M. Dignac, C. Rumpel, Fate of lignins in soils: a review. Soil Biol. Biochem. 2010, 42, 1200.
Fate of lignins in soils: a review.CrossRef | 1:CAS:528:DC%2BC3cXntVektLk%3D&md5=f047eee751c12f1dd11a44e7eb625909CAS |

[76]  J. R. Ertel, J. I. Hedges, The lignin component of humic substances: distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions. Geochim. Cosmochim. Acta 1984, 48, 2065.
The lignin component of humic substances: distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions.CrossRef | 1:CAS:528:DyaL2cXmtlemsLg%3D&md5=107ab5cb8d5d74aa4aea0872678b82cfCAS |

[77]  S. Opsahl, R. Benner, Early diagenesis of vascular plant tissues: lignin and cutin decomposition and biogeochemical implications. Geochim. Cosmochim. Acta 1995, 59, 4889.
Early diagenesis of vascular plant tissues: lignin and cutin decomposition and biogeochemical implications.CrossRef | 1:CAS:528:DyaK2MXpvV2msrk%3D&md5=52cacd5a166217003c5e7c8586a58cb2CAS |

[78]  T. Riedel, S. Iden, J. Geilich, K. Wiedner, W. Durner, H. Biester, Changes in the molecular composition of organic matter leached from an agricultural topsoil following addition of biomass-derived black carbon (biochar). Org. Geochem. 2014, 69, 52.
Changes in the molecular composition of organic matter leached from an agricultural topsoil following addition of biomass-derived black carbon (biochar).CrossRef | 1:CAS:528:DC%2BC2cXksFyrsro%3D&md5=e67ab61bc6b80cea5167e4ab4c3b085bCAS |

[79]  Y. Kuzyakov, I. Bogomolova, B. Glaser, Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 2014, 70, 229.
Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis.CrossRef | 1:CAS:528:DC%2BC2cXitlCjt7k%3D&md5=2523652b64e8a3f03f41aa26c7e88374CAS |

[80]  S. Abiven, M. W. I. Schmidt, J. Lehmann, Biochar by design. Nat. Geosci. 2014, 7, 326.
Biochar by design.CrossRef | 1:CAS:528:DC%2BC2cXntVSnsbg%3D&md5=6d93c74499c6f6392a8f7382b82cf042CAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (892 KB) Export Citation Cited By (1)