Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Theoretical study of the hydrolysis of HOSO + NO2 as a source of atmospheric HONO: effects of H2O or NH3

Yan-Qiu Sun A , Xu Wang A , Feng-Yang Bai A and Xiu-Mei Pan A B
+ Author Affiliations
- Author Affiliations

A Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, 130024 Changchun, China.

B Corresponding author. Email: panxm460@nenu.edu.cn

Environmental Chemistry 14(1) 19-30 https://doi.org/10.1071/EN16080
Submitted: 14 September 2015  Accepted: 13 July 2016   Published: 22 August 2016

Environmental context. Nitrous acid (HONO) has long been recognized as an important atmospheric pollutant, with the reaction of HOSO + NO2 being a source of HONO. We explore the effects of an additional water or ammonia molecule on this reaction. Calculations show that the ammonia molecule has a more effective role than the water molecule in assisting the reaction.

Abstract. Depending on different ways that NO2 approaches the HOSO radical, the main reactant complexes HOS(O)NO2 and HOS(O)ONO–L (lowest energy structure of the isomer) were revealed by Lesar et al. (J. Phys. Chem. A 2011, 115, 11008), and the reaction of HOSO + NO2 is a source of trans (t)-HONO and SO2. In the present work, the water molecule in the hydrolysis reaction of HOSO + NO2 not only acts as a catalyst giving the products of t-HONO + SO2, but also as a reactant giving the products of t-HONO + H2SO3, c-HONO + H2SO3 and HNO3 + t-S(OH)2. For the reaction of HOSO + NO2 + H2O, the main reaction paths 2, 7, and 9 are further investigated with an additional water or ammonia molecule. The CBS-QB3 calculation result shows that the process of HOS(O)NO2–H2O → t-HONO–SO2–H2O is favourable with a barrier of 0.1 kcal mol–1. Although the following process of t-HONO–SO2–H2O → t-HONO–H2SO3 is unfavourable with a barrier 33.6 kcal mol–1, the barrier is reduced by 17.3 or 26.3 kcal mol–1 with an additional water or ammonia molecule. Starting with HOS(O)ONO–L–H2O, the energy barriers of path 7 and path 9 are reduced by 8.9 and 8.5 kcal mol–1 with an additional water molecule and by 9.9 and 9.2 kcal mol–1 with an additional ammonia molecule. Ammonia is more beneficial than water for assisting the HOSO + NO2 + H2O reaction. Three t-HONO–H2SO3 isomers which contain double intermolecular hydrogen bonds are studied by frequency and natural bond orbital calculations. Frequency calculations show that all hydrogen bonds exhibit an obvious red shift. The larger second-order stabilisation energies are consistent with the shorter hydrogen bonds. H2SO3 can promote the process of t-HONO → HNO2, and reduce the barrier by 45.2 kcal mol–1. The product NH3–H2SO3 can further form a larger cluster (NH3–H2SO3)n (n = 2, 4) including NH4+HSO3 ion pairs.


References

[1]  A. S. Kallend, Effect of sulphur dioxide on equilibrium in hydrogen flames. Combust. Flame 1969, 13, 324.
Effect of sulphur dioxide on equilibrium in hydrogen flames.CrossRef | 1:CAS:528:DyaF1MXkvFehs7w%3D&md5=ed78ce6f870ab3d0ce55171d49066cceCAS |

[2]  P. Glarborg, D. Kubel, K. Dam-Johansen, H. M. Chiang, J. W. Bozzelli, Impact of SO2 and NO on CO oxidation under post-flame conditions. Int. J. Chem. Kinet. 1996, 28, 773.
Impact of SO2 and NO on CO oxidation under post-flame conditions.CrossRef | 1:CAS:528:DyaK28XmtVykt7o%3D&md5=b151127aba6da3509b67f6e2de5fe106CAS |

[3]  P. Dagaut, F. Lecomte, J. Mieritz, P. Glarborg, Experimental and kinetic modeling study of the effect of NO and SO2 on the oxidation of CO-H2 mixtures. Int. J. Chem. Kinet. 2003, 35, 564.
Experimental and kinetic modeling study of the effect of NO and SO2 on the oxidation of CO-H2 mixtures.CrossRef | 1:CAS:528:DC%2BD3sXoslKgsrk%3D&md5=e3e88f1a4fc502c646f64f2210df2bdeCAS |

[4]  J. Giménez-López, M. Martínez, A. Millera, R. Bilbao, M. U. Alzueta, SO2 effects on CO oxidation in a CO2 atmosphere, characteristic of oxy-fuel conditions. Combust. Flame 2011, 158, 48.
SO2 effects on CO oxidation in a CO2 atmosphere, characteristic of oxy-fuel conditions.CrossRef |

[5]  C. L. Rasmussen, P. Glarborg, P. Marshall, Mechanisms of radical removal by SO2. Proc. Combust. Inst. 2007, 31, 339.
Mechanisms of radical removal by SO2.CrossRef |

[6]  M. Y. Ballester, Y. Orozco-Gonzalez, J. D. Garrido, H. F. Dos Santos, A quasiclassical trajectory study of the OH + SO reaction: the role of rotational energy. J. Chem. Phys. 2010, 132, 044310.
A quasiclassical trajectory study of the OH + SO reaction: the role of rotational energy.CrossRef | 1:STN:280:DC%2BC3c%2FmvVWqtg%3D%3D&md5=560ab6d06c4dcf2e5cfabd409eef08e7CAS | 20113036PubMed |

[7]  M. Y. Ballester, P. J. S. B. Caridade, A. J. C. Varandas, Dynamics and kinetics of the H + SO2 reaction: a theoretical study. Chem. Phys. Lett. 2007, 439, 301.
Dynamics and kinetics of the H + SO2 reaction: a theoretical study.CrossRef | 1:CAS:528:DC%2BD2sXkslWrs7k%3D&md5=ce212cd02d9fc222280da11c54eb653aCAS |

[8]  M. Y. Ballester, A. J. C. Varandas, Theoretical study of the reaction OH + SO → H + SO2. Chem. Phys. Lett. 2007, 433, 279.
Theoretical study of the reaction OH + SO → H + SO2.CrossRef | 1:CAS:528:DC%2BD28XhtlCrtbfO&md5=d5a39d55ae7ac4b3d22e7e30e53c7447CAS |

[9]  A. Goumri, J. -D. R. Rocha, P. Marshall, Kinetics of the recombination reaction SH + O2 + Ar: implications for the formation and loss of HSOO and SOO in the atmosphere. J. Phys. Chem. 1995, 99, 10834.
Kinetics of the recombination reaction SH + O2 + Ar: implications for the formation and loss of HSOO and SOO in the atmosphere.CrossRef | 1:CAS:528:DyaK2MXmt12qsrg%3D&md5=a216abe0fda35cf7d7d9b545a18abf27CAS |

[10]  B. Wang, H. Hou, Theoretical investigations on the SO2 + HO2 reaction and the SO2-HO2 radical complex. Chem. Phys. Lett. 2005, 410, 235.
Theoretical investigations on the SO2 + HO2 reaction and the SO2-HO2 radical complex.CrossRef | 1:CAS:528:DC%2BD2MXlvFeju7w%3D&md5=f8d20b1556840890beddc3abe5da466eCAS |

[11]  A. J. Frank, M. Sadilek, J. G. Ferrier, F. Turecek, Hydroxysulfinyl radical and sulfinic acid are stable species in the gas phase. J. Am. Chem. Soc. 1996, 118, 11321.
Hydroxysulfinyl radical and sulfinic acid are stable species in the gas phase.CrossRef | 1:CAS:528:DyaK28XmsFOisLs%3D&md5=3f528e314ea0abdf7c52091a9afbeb51CAS |

[12]  E. Isoniemi, L. Khriachtchev, J. Lundell, M. Rasanen, Photochemistry of H2S/SO2 mixtures in solid krypton. J. Mol. Struct. 2001, 563–564, 261.
Photochemistry of H2S/SO2 mixtures in solid krypton.CrossRef |

[13]  E. Isoniemi, L. Khriachtchev, J. Lundell, M. Rasanen, HSO2 isomers in rare-gas solids. Phys. Chem. Chem. Phys. 2002, 4, 1549.
HSO2 isomers in rare-gas solids.CrossRef | 1:CAS:528:DC%2BD38XivVKmtbk%3D&md5=77ec9b6d8e321fcbfd14449f86683bccCAS |

[14]  M. C. McCarthy, V. Lattanzi, O. Martinez, J. Gauss, S. Thorwirth, Spectroscopic detection and structure of hydroxidooxidosulfur (HOSO) radical, an important intermediate in the chemistry of sulfur-bearing compounds. J. Phys. Chem. Lett. 2013, 4, 4074.
Spectroscopic detection and structure of hydroxidooxidosulfur (HOSO) radical, an important intermediate in the chemistry of sulfur-bearing compounds.CrossRef | 1:CAS:528:DC%2BC3sXhslOnu77L&md5=1e6ba47f138bf55147c22620cc4dc085CAS |

[15]  J. D. Garrido, M. Y. Ballester, Y. Orozco-Gonzalez, S. Canuto, CASPT2 study of the potential energy surface of the HSO2 system. J. Phys. Chem. A 2011, 115, 1453.
CASPT2 study of the potential energy surface of the HSO2 system.CrossRef | 1:CAS:528:DC%2BC3MXitVShurk%3D&md5=a8be97de0347e3d2b5756ab11dedeb56CAS | 21323334PubMed |

[16]  S. E. Wheeler, H. F. Schaefer, Thermochemistry of the HOSO radical, a key intermediate in fossil fuel combustion. J. Phys. Chem. A 2009, 113, 6779.
Thermochemistry of the HOSO radical, a key intermediate in fossil fuel combustion.CrossRef | 1:CAS:528:DC%2BD1MXmtF2qtLg%3D&md5=a8832d917d1fbd104b1f89074ee5e19cCAS | 19459665PubMed |

[17]  A. Goumri, J. -D. R. Rocha, D. Laakso, C. E. Smith, P. Marshall, Characterization of reaction pathways on the potential energy surfaces for H + SO2 and HS + O2. J. Phys. Chem. A 1999, 103, 11328.
Characterization of reaction pathways on the potential energy surfaces for H + SO2 and HS + O2.CrossRef | 1:CAS:528:DyaK1MXnslSktrk%3D&md5=492b25ce59a2e37bc530e06af31d3053CAS |

[18]  A. Lesar, A. Tavar, Atmospheric reaction of the HOSO radical with NO2: a theoretical study. J. Phys. Chem. A 2011, 115, 11008.
Atmospheric reaction of the HOSO radical with NO2: a theoretical study.CrossRef | 1:CAS:528:DC%2BC3MXht1SltLjP&md5=ead73e616c637d537a7f8dbd6e70c534CAS | 21892839PubMed |

[19]  B. J. Finlayson-Pitts, J. N. Pitts Jr, Homogeneous and heterogeneous chemistry in the stratosphere, in Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications 2000, pp. 675–726. (Academic Press: San Diego, CA, USA)

[20]  Y. Elshorbany, I. Barnes, K. H. Becker, J. Kleffmann, P. Wiesen, Sources and cycling of tropospheric hydroxyl radicals – an overview. Z. Phys. Chem. 2010, 224, 967.
Sources and cycling of tropospheric hydroxyl radicals – an overview.CrossRef | 1:CAS:528:DC%2BC3cXhtFygsrzM&md5=8edfecbc470ff4d2c1123d464506a4fcCAS |

[21]  B. Q. Zhang, F. M. Tao, Direct homogeneous nucleation of NO2, H2O, and NH3 for the production of ammonium nitrate particles and HONO gas. Chem. Phys. Lett. 2010, 489, 143.
Direct homogeneous nucleation of NO2, H2O, and NH3 for the production of ammonium nitrate particles and HONO gas.CrossRef | 1:CAS:528:DC%2BC3cXkt1Kgtbo%3D&md5=cf0e33b8e8638d316d71d0ef798bf395CAS |

[22]  B. J. Finlayson-Pitts, L. M. Wingen, A. L. Sumner, D. Syomin, K. A. Ramazan, The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism. Phys. Chem. Chem. Phys. 2003, 5, 223.
The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism.CrossRef | 1:CAS:528:DC%2BD3sXot1U%3D&md5=fc80d6ad26fa33b3c97b9a5818929220CAS |

[23]  M. E. Varner, B. J. Finlayson-Pitts, R. Benny Gerber, Reaction of a charge-separated ONONO2 species with water in the formation of HONO: an MP2 molecular dynamics study. Phys. Chem. Chem. Phys. 2014, 16, 4483.
Reaction of a charge-separated ONONO2 species with water in the formation of HONO: an MP2 molecular dynamics study.CrossRef | 1:CAS:528:DC%2BC2cXisVWqtr4%3D&md5=63325e8947c058fdc1d6074476496449CAS | 24473238PubMed |

[24]  X. Wang, F. Y. Bai, Y. Q. Sun, R. S. Wang, X. M. Pan, F. -M. Tao, Theoretical study of the gaseous hydrolysis of NO2 in the presence of NH3 as a source of atmospheric HONO. Environ. Chem. 2016, 13, 611.
Theoretical study of the gaseous hydrolysis of NO2 in the presence of NH3 as a source of atmospheric HONO.CrossRef | 1:CAS:528:DC%2BC28XhtV2it7rP&md5=dd7c925edf1475aff520b64b623f93c4CAS |

[25]  Z. J. Li, B. Q. Zhang, Experimental and theoretical investigation of homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → Products (n =1, 2). J. Phys. Chem. A 2012, 116, 8989.
Experimental and theoretical investigation of homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → Products (n =1, 2).CrossRef | 1:CAS:528:DC%2BC38Xht1WqurvF&md5=2677aafa4a8833e29a1a973b187a22eaCAS |

[26]  J. J. Liu, S. Fang, W. Liu, M. Wang, Mechanism of the gaseous hydrolysis reaction of SO2: effects of NH3 versus H2O. J. Phys. Chem. A 2015, 119, 102.
Mechanism of the gaseous hydrolysis reaction of SO2: effects of NH3 versus H2O.CrossRef | 1:CAS:528:DC%2BC2cXitFeitb3N&md5=42f71870960c5d9276e15bb9c627c201CAS |

[27]  L. J. Larson, M. Kuno, F. M. Tao, Hydrolysis of sulfur trioxide to form sulfuric acid in small water clusters. J. Chem. Phys. 2000, 112, 8830.
Hydrolysis of sulfur trioxide to form sulfuric acid in small water clusters.CrossRef | 1:CAS:528:DC%2BD3cXivFClsbo%3D&md5=bf650260ced158c40fc0704a7dbbf9aeCAS |

[28]  A. Lesar, S. Tusar, Structure, stability, and spectroscopic properties of H-bonded complexes of HOSO and CH3SO with H2O. J. Phys. Chem. A 2014, 118, 7855.
Structure, stability, and spectroscopic properties of H-bonded complexes of HOSO and CH3SO with H2O.CrossRef | 1:CAS:528:DC%2BC2cXhtl2rtbrL&md5=ac56eee07a895803ac008e4005e2e759CAS | 25144815PubMed |

[29]  A. Lesar, S. T?sar, Water mediated hydrogen abstraction mechanism in the radical reaction between HOSO and NO2. Chem. Phys. Lett. 2016, 651, 209.
Water mediated hydrogen abstraction mechanism in the radical reaction between HOSO and NO2.CrossRef | 1:CAS:528:DC%2BC28XkvV2qtbY%3D&md5=e5e5995947d40663e341069f23beaffbCAS |

[30]  T. M. Townsend, A. Allanic, C. Noonan, J. R. Sodeau, Characterization of sulfurous acid, sulfite, and bisulfite aerosol systems. J. Phys. Chem. A 2012, 116, 4035.
Characterization of sulfurous acid, sulfite, and bisulfite aerosol systems.CrossRef | 1:CAS:528:DC%2BC38XkvFOnsb8%3D&md5=7d58061b5290f98b139dd86e597f2961CAS | 22471624PubMed |

[31]  Y. Guo, Z. Liu, Z. Huang, Q. Liu, S. Guo, Reaction behavior of sulfur dioxide with ammonia. Ind. Eng. Chem. Res. 2005, 44, 9989.
Reaction behavior of sulfur dioxide with ammonia.CrossRef | 1:CAS:528:DC%2BD2MXhtFynurvJ&md5=5aece72e3eef2e46e56b908e84e8f0daCAS |

[32]  L. J. Larson, F. M. Tao, Interactions and reactions of sulfur trioxide, water, and ammonia: an ab-initio and density functional theory study. J. Phys. Chem. A 2001, 105, 4344.
Interactions and reactions of sulfur trioxide, water, and ammonia: an ab-initio and density functional theory study.CrossRef | 1:CAS:528:DC%2BD3MXit1Sqtrk%3D&md5=694a131a1e89efb02da2d452d9c58f56CAS |

[33]  P. M. Pawlowski, S. R. Okimoto, F. M. Tao, Structure and stability of sulfur trioxide-ammonia clusters with water: implications on atmospheric nucleation and condensation. J. Phys. Chem. A 2003, 107, 5327.
Structure and stability of sulfur trioxide-ammonia clusters with water: implications on atmospheric nucleation and condensation.CrossRef | 1:CAS:528:DC%2BD3sXksFKntLw%3D&md5=d7ecab932818ac1c88426d19b7fdd975CAS |

[34]  R. Zhang, A. Khalizov, L. Wang, M. Hu, W. Xu, Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 2012, 112, 1957.
Nucleation and growth of nanoparticles in the atmosphere.CrossRef | 1:CAS:528:DC%2BC3MXhtl2itrnN&md5=b158465cd1e07940eedacddbfcf9ec97CAS | 22044487PubMed |

[35]  S. T. Pei, S. Jiang, Y. R. Liu, T. Huang, Properties of ammonium ion–water clusters: analyses of structure evolution, noncovalent interactions, and temperature and humidity effects. J. Phys. Chem. A 2015, 119, 3035.
Properties of ammonium ion–water clusters: analyses of structure evolution, noncovalent interactions, and temperature and humidity effects.CrossRef | 1:CAS:528:DC%2BC2MXjslemtrg%3D&md5=c1d2b1a18f064fa66834f3e865f0accbCAS | 25735627PubMed |

[36]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Foxet, Gaussian 09, revision A.02 2009 (Gaussian Inc.: Wallingford, CT).

[37]  A. D. Becke, Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.
Density functional thermochemistry. III. The role of exact exchange.CrossRef | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=dd7f0fe0c3514d6e1d0d76b3ef8b0308CAS |

[38]  C. Lee, W. Yang, R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.
Development of the colle-salvetti correlation-energy formula into a functional of the electron density.CrossRef | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=dfbafa7457651cf119013c9732bf0d8aCAS |

[39]  B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy density functionals of becke and lee, yang and parr. Chem. Phys. Lett. 1989, 157, 200.
Results obtained with the correlation energy density functionals of becke and lee, yang and parr.CrossRef | 1:CAS:528:DyaL1MXkvVCgsL4%3D&md5=91c529a35467ebb2e96ec47dfaf2b73fCAS |

[40]  L. A. Curtiss, K. Raghavachari, J. A. Pople, Gaussian-2 theory using reduced Møller-Plesset orders. J. Chem. Phys. 1993, 98, 1293.
Gaussian-2 theory using reduced Møller-Plesset orders.CrossRef | 1:CAS:528:DyaK3sXhtlagt70%3D&md5=1a320c575c0b54d6f7e4666150e342f9CAS |

[41]  C. Gonzalez, H. B. Schlegel, An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154.
An improved algorithm for reaction path following.CrossRef | 1:CAS:528:DyaL1MXhsVahtbk%3D&md5=52e4ca68c4d5b51ae9fd9599f8ac2f97CAS |

[42]  J. Čížek, On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv. Chem. Phys. 1969, 14, 35.

[43]  G. D. Purvis, R. J. Bartlett, A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910.
A full coupled-cluster singles and doubles model: the inclusion of disconnected triples.CrossRef | 1:CAS:528:DyaL38XhtFSgtLY%3D&md5=df5d4b0ba7a19e15bc6fd8ac36b3a4d8CAS |

[44]  G. E. Scuseria, C. L. Janssen, H. F. Schaefer, An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys. 1988, 89, 7382.
An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations.CrossRef | 1:CAS:528:DyaL1MXht1WlsLk%3D&md5=f5c9bf4a20a5f589c3a75b4467a09a1eCAS |

[45]  G. E. Scuseria, H. F. Schaefer, Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD). J. Chem. Phys. 1989, 90, 3700.
Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD).CrossRef | 1:CAS:528:DyaL1MXktFalsbg%3D&md5=72a3b7ba6a96490f2b0fff24f3d36a04CAS |

[46]  J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 1999, 110, 2822.
A complete basis set model chemistry. VI. Use of density functional geometries and frequencies.CrossRef | 1:CAS:528:DyaK1MXltlKntg%3D%3D&md5=9543a7587cbdd61e2fdb432a0a261bc7CAS |

[47]  L. A. Curtiss, K. Raghavachari, J. A. Pople, Gaussian-2 theory using reduced Mo/ller-Plesset orders. J. Chem. Phys. 1993, 98, 1293.
Gaussian-2 theory using reduced Mo/ller-Plesset orders.CrossRef | 1:CAS:528:DyaK3sXhtlagt70%3D&md5=1a320c575c0b54d6f7e4666150e342f9CAS |

[48]  M. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendeman, D. A. Ramsay, F. J. Lovas, W. J. Lafery, A. G. Marki, Molecular structures of gas-phase polyatomc molecules determinedby spectroscopic methods. J. Phys. Chem. Ref. Data 1979, 8, 619.
Molecular structures of gas-phase polyatomc molecules determinedby spectroscopic methods.CrossRef | 1:CAS:528:DyaL3cXktVOksQ%3D%3D&md5=c389347d77787919e98f7c6db3488f01CAS |

[49]  C. Y. Legault, CYL view, version 1.0b 2009 (Université de Sherbrooke: Canada).

[50]  A. Montoya, K. Sendt, B. S. Haynes, Gas-phase interaction of H2S with O2: a kinetic and quantum chemistry study of the potential energy surface. J. Phys. Chem. A 2005, 109, 1057.
Gas-phase interaction of H2S with O2: a kinetic and quantum chemistry study of the potential energy surface.CrossRef | 1:CAS:528:DC%2BD2MXlsFCqsg%3D%3D&md5=d86cef2404b58c58ed5799c51fd788c3CAS | 16833414PubMed |

[51]  R. J. Boyd, A. Gupta, R. F. Langler, S. P. Lownie, J. A. Pincock, Sulfonyl radicals, sulfinic acid, and related species: an ab initio molecular orbital study. Can. J. Chem. 1980, 58, 331.
Sulfonyl radicals, sulfinic acid, and related species: an ab initio molecular orbital study.CrossRef | 1:CAS:528:DyaL3cXhvVKgsrw%3D&md5=5ca6881a8f36ed29dda93e42240cfcb9CAS |

[52]  D. Laakso, P. Marshall, An ab initio study of sulfinic acid and related species. J. Phys. Chem. 1992, 96, 2471.
An ab initio study of sulfinic acid and related species.CrossRef | 1:CAS:528:DyaK38XitVWnu74%3D&md5=949ec0cd557bded954b77c25d93a18c6CAS |

[53]  A. H. Otto, R. Steudel, Gas-phase acidities of nine sulfur oxoacids of composition [H2, S, On](n =1–4). Eur. J. Inorg. Chem. 2000, 2000, 617.
Gas-phase acidities of nine sulfur oxoacids of composition [H2, S, On](n =1–4).CrossRef |

[54]  B. Napolion, M. J. Huang, J. D. Watts, Coupled-cluster study of isomers of H2SO2. J. Phys. Chem. A 2008, 112, 4158.
Coupled-cluster study of isomers of H2SO2.CrossRef | 1:CAS:528:DC%2BD1cXksVSgsL8%3D&md5=68027f9e3c26c2b9cdabfc7d98eeb7e0CAS | 18399676PubMed |

[55]  K. N. Crabtree, O. J. Martinez, L. Barreau, M. C. McCarthy, S. Thorwirth, Microwave detection of sulfoxylic acid (HOSOH). J. Phys. Chem. A 2013, 117, 3608.
Microwave detection of sulfoxylic acid (HOSOH).CrossRef | 1:CAS:528:DC%2BC3sXkslWmsrs%3D&md5=9be4e2edcfd7e5e11b29427e3d488af5CAS | 23534485PubMed |

[56]  H. Dong, M. R. Nimlos, M. E. Himmel, D. K. Johnson, X. Qian, The effects of water on β-d-xylose condensation reactions. J. Phys. Chem. A 2009, 113, 8577.
The effects of water on β-d-xylose condensation reactions.CrossRef | 1:CAS:528:DC%2BD1MXotFKntLg%3D&md5=a36bc80831f153bddbdd2201e924c282CAS | 19572686PubMed |

[57]  A. F. Voegele, C. S. Tautermann, T. Loerting, A. Hallbrucker, E. Mayer, K. R. Liedl, About the stability of sulfurous acid (H2SO3) and its dimer. Chemistry 2002, 8, 5644.
About the stability of sulfurous acid (H2SO3) and its dimer.CrossRef | 1:CAS:528:DC%2BD3sXhtFansw%3D%3D&md5=616a9095da2a2c69b795a13317f0315cCAS | 12693045PubMed |

[58]  T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580.
Multiwfn: a multifunctional wavefunction analyzer.CrossRef | 22162017PubMed |

[59]  W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 33.
VMD: visual molecular dynamics.CrossRef | 1:CAS:528:DyaK28Xis12nsrg%3D&md5=36fa27a2ae6b5a0f2aeadf9e7f99363dCAS | 8744570PubMed |

[60]  X. Lu, R. N. Musin, M. C. Lin, Gas-phase reactions of HONO with HNO and NH3: an ab initio MO/TST study. J. Phys. Chem. A 2000, 104, 5141.
Gas-phase reactions of HONO with HNO and NH3: an ab initio MO/TST study.CrossRef | 1:CAS:528:DC%2BD3cXivVaisrk%3D&md5=6803c2b92f7ff3b5ead1f0b67fde30cdCAS |

[61]  B. S. Jursic, Density functional theory exploring the HONO potential energy surface. Chem. Phys. Lett. 1999, 299, 334.
Density functional theory exploring the HONO potential energy surface.CrossRef | 1:CAS:528:DyaK1MXivVahtw%3D%3D&md5=9d7db96619587b8a071590810fc616b5CAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (1.5 MB) Export Citation