Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Ion exchange technique (IET) to characterise Ag+ exposure in soil extracts contaminated with engineered silver nanoparticles

Dina Schwertfeger A , Jessica Velicogna A , Alexander Jesmer A , Heather McShane B , Richard Scroggins A and Juliska Princz A C
+ Author Affiliations
- Author Affiliations

A Biological Assessment and Standardisation Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1A 0H3, Canada.

B Department of Natural Resource Sciences, McGill University, 21 111 Lakeshore Road, Sainte Anne de Bellevue, Québec, H9X 3V9, Canada.

C Corresponding author. Email: juliska.princz@canada.ca

Environmental Chemistry 14(2) 123-133 https://doi.org/10.1071/EN16136
Submitted: 30 July 2016  Accepted: 21 November 2016   Published: 11 January 2017

Environmental context. Biosolid-amended soils are likely sinks for manufactured silver nanoparticles, the environmental toxicity of which is believed to be related to the release and accumulation of Ag+ ions. This study demonstrates how an ion exchange technique can be applied to soil extracts to provide Ag+ measurements at low, environmentally relevant levels. The technique is a valuable addition to existing analytical methods for tracking the behaviour of Ag nanoparticles and Ag+ ions in the terrestrial environment.

Abstract. The lack of silver speciation exposure data in toxicity studies investigating the effects of manufactured silver nanoparticles (AgNPs) in natural soil media limits the ability to discern nano-specific effects from effects of the toxic Ag+ form, which may be released from the manufactured AgNPs contained in wastewater, biosolids or soil environment. Using samples containing Ag+ or mixtures of Ag+ and AgNPs, ranging in total Ag concentrations of 10–5 to 10–9 M, and prepared in de-ionised water and filtered soil extracts, the validity of the ion exchange technique (IET) to quantify Ag+ was investigated by comparing measurements to those of an Ag+ ion selective electrode (ISE) and to the dissolved fraction from single particle inductively coupled plasma–mass spectrometry (SP-ICP-MS) analysis (SP-dissolved). When analysing samples in the filtered soil extract, IET and ISE gave comparable results down to 10–7 M, below which Ag+ activities were below the ISE detection limit. For water samples, SP-dissolved values were generally comparable or slightly greater (on average 65 %) compared with IET-Ag+ at all concentrations. The high bias was likely due to inclusion of unresolved particles below the SP-ICP detection limit of 19 nm. However, when analysing samples in the soil extract, SP-dissolved values were on average eight-fold greater than IET-Ag+, highlighting the effect that natural colloidal and dissolved soil constituents have on complexing Ag+, as well as the lack of specificity of the SP-dissolved analysis for the Ag+ species. IET is shown here to be a valid procedure to quantify Ag+ activity in soil extracts, and while the study highlights the limitations of using the SP-dissolved fraction to estimate this biologically relevant Ag fraction, it shows that combined, IET and SP-ICP-MS provide a valuable approach for investigating the behaviour of manufactured AgNPs in different matrixes.

Additional keywords: complex matrix, dissolved silver, ion exchange resin, ion selective electrode, silver free ion activity, SP-ICP-MS, speciation.


References

[1]  A. R. Jacobson, M. B. McBride, P. Baveye, T. S. Steenhuis, Environmental factors determining the trace-level sorption of silver and thallium to soils. Sci. Total Environ. 2005, 345, 191.
Environmental factors determining the trace-level sorption of silver and thallium to soils.CrossRef | 1:CAS:528:DC%2BD2MXks1Klurk%3D&md5=92d513528c0a2a8caa85a064bbd4aa7bCAS |

[2]  D. B. Kleja, S. Shibutani, I. Persson, J. P. Gustafsson, Binding of Ag(I) by organic soil materials and isolated humic substances: XANES spectroscopy and modeling, in International Conference on the Biogeochemistry of Trace Elements (ICOBTE), 16–20 June 2013 (University of Georgia: Athens, GA, USA).

[3]  P. G. C. Campbell, O. Errecalde, C. Fortin, W. R. Hiriart-Baer, B. Vigneault, Metal bioavailability to phytoplankton—applicability of the biotic ligand model. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 2002, 133, 189.
Metal bioavailability to phytoplankton—applicability of the biotic ligand model.CrossRef |

[4]  M. E. Vance, T. Kuiken, E. P. Vejerano, S. P. McGinnis, M. F. Hochella, D. Rejeski, M. S. Hull, Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. J. Nanotechnol. 2015, 6, 1769.
| 1:CAS:528:DC%2BC2MXhs12hs7nM&md5=6b64505357772b1f134816027bd2cf8bCAS |

[5]  S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts, W. I. Hagens, A. G. Oomen, E. H. W. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van de Meent, S. Dekkers, W. H. De Jong, M. van Zijverden, A. J. A. M. Sips, R. E. Geertsma, Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009, 3, 109.
Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment.CrossRef | 1:CAS:528:DC%2BC3cXnsFOmur0%3D&md5=9f0e685507b0df5f02d0dabe6ac5c5adCAS |

[6]  J. Liu, R. H. Hurt, Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169.
Ion release kinetics and particle persistence in aqueous nano-silver colloids.CrossRef | 1:CAS:528:DC%2BC3cXit1Wqsrc%3D&md5=8a83bbbcd433bd9d425459097167abe2CAS |

[7]  A. G. Schultz, D. Boyle, D. Chamot, K. J. Ong, G. G. Goss, K. J. Wilkinson, J. C. McGeer, G. Sunahara, G. G. Goss, Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing. Environ. Chem. 2014, 11, 207.
Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing.CrossRef | 1:CAS:528:DC%2BC2cXhtVajsLzL&md5=7c4cfe7b90dcbbd91113b67ace0777d7CAS |

[8]  L. S. Dorobantu, C. Fallone, A. J. Noble, J. Veinot, G. Ma, G. G. Goss, R. E. Burrell, Toxicity of silver nanoparticles against bacteria, yeast, and algae. J. Nanopart. Res. 2015, 17, 172.
Toxicity of silver nanoparticles against bacteria, yeast, and algae.CrossRef |

[9]  D. M. Aruguete, M. F. Hochella, Bacteria–nanoparticle interactions and their environmental implications. Environ. Chem. 2010, 7, 3.
Bacteria–nanoparticle interactions and their environmental implications.CrossRef | 1:CAS:528:DC%2BC3cXjt12jtL8%3D&md5=d19209c30ec64ed7109aad4bc95acc7dCAS |

[10]  J. Fabrega, S. R. Fawcett, J. C. Renshaw, J. R. Lead, Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol. 2009, 43, 7285.
Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter.CrossRef | 1:CAS:528:DC%2BD1MXmvFCksrw%3D&md5=86e67dcef838c641b31303b0d6154edfCAS |

[11]  J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, M. J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346.
The bactericidal effect of silver nanoparticles.CrossRef | 1:CAS:528:DC%2BD2MXht1CiurjJ&md5=c53f5fd6ed660fe393026653789d6e19CAS |

[12]  M. Diez-Ortiz, E. Lahive, P. Kille, K. Powell, A. J. Morgan, K. Jurkschat, C. A. M. Van Gestel, J. F. W. Mosselmans, C. Svendsen, D. J. Spurgeon, Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm Lumbricus rubellus. Environ. Toxicol. Chem. 2015, 34, 2263.
Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm Lumbricus rubellus.CrossRef | 1:CAS:528:DC%2BC2MXhsVyqsr7K&md5=070d4b6207ff6ad5a164468ebeff0e52CAS |

[13]  K. Schlich, T. Klawonn, K. Terytze, K. Hund-Rinke, Hazard assessment of a silver nanoparticle in soil applied via sewage sludge. Environ. Sci. Eur. 2013, 25, 17.
Hazard assessment of a silver nanoparticle in soil applied via sewage sludge.CrossRef |

[14]  J. G. Coleman, A. J. Kennedy, A. J. Bednar, J. F. Ranville, J. G. Laird, A. R. Harmon, C. A. Hayes, E. P. Gray, C. P. Higgins, G. Lotufo, J. A. Steevens, Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus. Environ. Toxicol. Chem. 2013, 32, 2069.
Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus.CrossRef | 1:CAS:528:DC%2BC3sXht1elsLrO&md5=e56db8871da95dc1b9ce949b48daefe3CAS |

[15]  W. A. Shoults-Wilson, O. V. Tsyusko, P. M. Bertsch, J. M. Unrine, B. C. Reinsch, G. V. Lowry, Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci. Soc. Am. J. 2011, 75, 365.
Role of particle size and soil type in toxicity of silver nanoparticles to earthworms.CrossRef | 1:CAS:528:DC%2BC3MXksFOlurY%3D&md5=293b252d91b4cf15e958b4c49a1264e9CAS |

[16]  L. H. Heckmann, M. B. Hovgaard, D. S. Sutherland, H. Autrup, F. Besenbacher, J. J. Scott-Fordsmand, Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 2011, 20, 226.
Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida.CrossRef | 1:CAS:528:DC%2BC3MXjtFCjtw%3D%3D&md5=07a08aca2b769787d6316846159742b5CAS |

[17]  J. Velicogna, E. Ritchie, R. P. Scroggins, J. I. Princz, A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicology 2016, 10, 1144.
| 1:CAS:528:DC%2BC28XotF2ms7w%3D&md5=3639acbf9ff28b72378dc30483bdfc57CAS |

[18]  J. P. Gustafsson, Visual MINTEQ version 3.1 2014 (KTH Royal Institute of Technology, Land and Water Resource Engineering: Stockholm, Sweden).

[19]  L. J. Gimbert, P. M. Haygarth, R. Beckett, P. J. Worsfold, The influence of sample preparation on observed particle size distributions for contrasting soil suspensions using flow field-flow fractionation. Environ. Chem. 2006, 3, 184.
The influence of sample preparation on observed particle size distributions for contrasting soil suspensions using flow field-flow fractionation.CrossRef | 1:CAS:528:DC%2BD28Xms1ersLo%3D&md5=e7b27e3c08e2bdbda720f6a3a9d9107bCAS |

[20]  M. Hadioui, S. Leclerc, K. J. Wilkinson, Multimethod quantification of Ag+ release from nanosilver. Talanta 2013, 105, 15.
Multimethod quantification of Ag+ release from nanosilver.CrossRef | 1:CAS:528:DC%2BC3sXmt1WjurY%3D&md5=81cfbc0bf7f17662151ae14cf1232696CAS |

[21]  C. Peyrot, K. J. Wilkinson, M. Desrosiers, S. Sauvé, Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ. Toxicol. Chem. 2014, 33, 115.
Effects of silver nanoparticles on soil enzyme activities with and without added organic matter.CrossRef | 1:CAS:528:DC%2BC3sXhvFGktLvP&md5=50641f0aea3fc3a02cf6ca72ad10a1b6CAS |

[22]  A. L. Nolan, H. Zhang, M. J. McLaughlin, Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. J. Environ. Qual. 2005, 34, 496.
Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques.CrossRef | 1:CAS:528:DC%2BD2MXislOlt7k%3D&md5=55b05d0eb6d1cc0771874fb36f2eeba6CAS |

[23]  J. Agbenin, G. Welp, Bioavailability of copper, cadmium, zinc, and lead in tropical savanna soils assessed by diffusive gradient in thin films (DGT) and ion exchange resin membranes. Environ. Monit. Assess. 2012, 184, 2275.
Bioavailability of copper, cadmium, zinc, and lead in tropical savanna soils assessed by diffusive gradient in thin films (DGT) and ion exchange resin membranes.CrossRef | 1:CAS:528:DC%2BC38XjtFOjt78%3D&md5=56f0ff99f81f3029468d5000e3ebcac7CAS |

[24]  C. Parat, J. Y. Cornu, A. Schneider, L. Authier, V. Sapin-Didier, L. Denaix, M. Potin-Gautier, Comparison of two experimental speciation methods with a theoretical approach to monitor free and labile Cd fractions in soil solutions. Anal. Chim. Acta 2009, 648, 157.
Comparison of two experimental speciation methods with a theoretical approach to monitor free and labile Cd fractions in soil solutions.CrossRef | 1:CAS:528:DC%2BD1MXptleksro%3D&md5=6c5ac77d58e7a1378a82de4fd64e6e77CAS |

[25]  J. Rachou, C. Gagnon, S. Sauvé, Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices. Environ. Chem. 2007, 4, 90.
Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices.CrossRef | 1:CAS:528:DC%2BD2sXkt1entb8%3D&md5=fcb41e2434de8f666ea3a3ae6a99ad34CAS |

[26]  D. M. Schwertfeger, W. H. Hendershot, Ion exchange technique (IET) for measuring Cu2+, Ni2+ and Zn2+ activities in soils contaminated with metal mixtures. Environ. Chem. 2017, 14, 55.
Ion exchange technique (IET) for measuring Cu2+, Ni2+ and Zn2+ activities in soils contaminated with metal mixtures.CrossRef | 1:CAS:528:DC%2BC2sXhs1WqsA%3D%3D&md5=38996a83dcf485e9c123ca352f641badCAS |

[27]  D. M. Schwertfeger, W. H. Hendershot, Toxicity and metal bioaccumulation in Hordeum vulgare exposed to leached and nonleached copper amended soils. Environ. Toxicol. Chem. 2013, 32, 1800.
Toxicity and metal bioaccumulation in Hordeum vulgare exposed to leached and nonleached copper amended soils.CrossRef | 1:CAS:528:DC%2BC3sXhtFOjsb3L&md5=c7bffaddf3327de35715e4b33944d420CAS |

[28]  R. Benoit, K. J. Wilkinson, S. Sauve, Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem. Cent. J. 2013, 7, 75.

[29]  L. R. Pokhrel, B. Dubey, Evaluation of development responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci. Total Environ. 2013, 452–453, 321.
Evaluation of development responses of two crop plants exposed to silver and zinc oxide nanoparticles.CrossRef |

[30]  C. Fortin, P. G. C. Campbell, An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media. Int. J. Environ. Anal. Chem. 1998, 72, 173.
An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media.CrossRef | 1:CAS:528:DC%2BD3cXis12gtLY%3D&md5=c31813f6e39da306d6371a57eb5568fcCAS |

[31]  C. Fortin, Y. Couillard, B. Vigneault, P. G. C. Campbell, Determination of free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange. Aquat. Geochem. 2010, 16, 151.
Determination of free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange.CrossRef | 1:CAS:528:DC%2BD1MXhsFyjt7rN&md5=45512b93afe6cd50b5b79b06b507dcf4CAS |

[32]  Y. Ge, S. Sauvé, W. H. Hendershot, Equilibrium speciation of cadmium, copper, and lead in soil solutions. Commun. Soil Sci. Plant Anal. 2005, 36, 1537.
Equilibrium speciation of cadmium, copper, and lead in soil solutions.CrossRef | 1:CAS:528:DC%2BD2MXmtlWit7w%3D&md5=b9f8c6ce72fb256ab3626cae870d7a7dCAS |

[33]  Z. Chen, P. G. C. Campbell, C. Fortin, Silver binding by humic acid as determined by equilibrium ion-exchange and dialysis. J. Phys. Chem. A 2012, 116, 6532.
Silver binding by humic acid as determined by equilibrium ion-exchange and dialysis.CrossRef | 1:CAS:528:DC%2BC38XjtVGhsr0%3D&md5=08b29eeedead70a0d0f1c1761ba0b979CAS |

[34]  H. McShane, G. Sunahara, J. K. Whalen, W. H. Hendershot, Differences in soil solution chemistry between soils amended with nanosized CuO or Cu reference materials: implications for nanotoxicity tests. Environ. Sci. Technol. 2014, 48, 8135.
Differences in soil solution chemistry between soils amended with nanosized CuO or Cu reference materials: implications for nanotoxicity tests.CrossRef | 1:CAS:528:DC%2BC2cXpsVKlu70%3D&md5=9aaec87cb017ff6434fcda5362c3ecdcCAS |

[35]  S. Sauve, D. R. Parker, Chemical speciation of trace elements in soil solution, in Chemical Processes in Soils (Eds M. A. Tabatabai, D. Sparks) 2005, pp. 655–687 (Soil Science Society of America: Madison, WI, USA).

[36]  W. L. Lindsay, Chemical Equilibria in Soils 1979 (The Blackburn Press: Caldwell, NJ).

[37]  W. Peijnenburg, T. Jager, Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol. Environ. Saf. 2003, 56, 63.
Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues.CrossRef | 1:CAS:528:DC%2BD3sXmt1Wqurs%3D&md5=363bf9ecca508ee28c9f2a35982fbb8eCAS |

[38]  C. Degueldre, P. Y. Favarger, Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf., A 2003, 217, 137.
Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study.CrossRef | 1:CAS:528:DC%2BD3sXjsVWhurk%3D&md5=eb5782addcd8aea2b2182613d1161db7CAS |

[39]  C. Degueldre, P. Y. Favarger, S. Wold, Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal. Chim. Acta 2006, 555, 263.
Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode.CrossRef | 1:CAS:528:DC%2BD2MXhtlCnt7%2FL&md5=345ee05faca77417183a8ce46b610bd0CAS |

[40]  F. Laborda, J. Jimâenez-Lamana, E. Bolea, J. R. Castillo, Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2011, 26, 1362.
Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXnvVaqtro%3D&md5=2702ab40e641a7ce5d32f90446f01da8CAS |

[41]  D. M. Mitrano, J. F. Ranville, A. Bednar, K. Kazor, A. S. Hering, C. P. Higgins, Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environ. Sci. Nano 2014, 1, 248.
| 1:CAS:528:DC%2BC2cXotFyqtb4%3D&md5=11181a73992dc0cd378945722bd81943CAS |

[42]  D. M. Schwertfeger, J. Velicogna, A. Jesmer, R. P. Scroggins, J. I. Princz, SP-ICP-MS analysis of metallic nanoparticles in environmental samples with large dissolved analyte fractions. Anal. Chem. 2016, 10, 1144.
SP-ICP-MS analysis of metallic nanoparticles in environmental samples with large dissolved analyte fractions.CrossRef |

[43]  J. D. MacDonald, W. H. Hendershot, Modelling trace metal partitioning in forest floors of northern soils near metal smelters. Environ. Pollut. 2006, 143, 228.
Modelling trace metal partitioning in forest floors of northern soils near metal smelters.CrossRef | 1:CAS:528:DC%2BD28Xks1Ols7w%3D&md5=69d6350037860b5b0a2963d1b42c3eb9CAS |

[44]  A. Hineman, C. Stephan, Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J. Anal. At. Spectrom. 2014, 29, 1252.
Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality.CrossRef | 1:CAS:528:DC%2BC2cXhtVajtLbP&md5=50ea924c4c0ff93dcdeec1ea4f06c04eCAS |

[45]  H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins, J. F. Ranville, Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 2011, 83, 9361.
Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3MXhsVCrsLvO&md5=cf2fc585bb5a5bbec5d62a3a0167b26eCAS |

[46]  M. Hadioui, C. Peyrot, K. J. Wilkinson, Improvements to single particle ICPMS by the online coupling of ion exchange resins. Anal. Chem. 2014, 86, 4668.
Improvements to single particle ICPMS by the online coupling of ion exchange resins.CrossRef | 1:CAS:528:DC%2BC2cXmsVGlu78%3D&md5=bf98f149147d9149591f7c28591a28a0CAS |

[47]  M. Baalousha, K. P. Arkill, I. Romer, R. E. Palmer, J. R. Lead, Transformations of citrate and Tween coated silver nanoparticles reacted with Na2S. Sci. Total Environ. 2015, 502, 344.
Transformations of citrate and Tween coated silver nanoparticles reacted with Na2S.CrossRef | 1:CAS:528:DC%2BC2cXhsFylu7bJ&md5=2d123a9c0ea802439e735cd00966b8b2CAS |

[48]  G. Cornelis, L. Pang, C. Doolette, J. K. Kirby, M. J. McLaughlin, Transport of silver nanoparticles in saturated columns of natural soils. Sci. Total Environ. 2013, 463–464, 120.
Transport of silver nanoparticles in saturated columns of natural soils.CrossRef |

[49]  R. Sekine, G. Brunetti, E. Donner, M. Khaksar, K. Vasilev, Å. K. Jämting, K. G. Scheckel, P. Kappen, H. Zhang, E. Lombi, Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films. Environ. Sci. Technol. 2015, 49, 897.
Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films.CrossRef | 1:CAS:528:DC%2BC2cXitVSgsLbF&md5=30e543cad1bf8018016b238992a3f137CAS |

[50]  A. R. Whitley, C. Levard, E. Oostveen, P. M. Bertsch, C. J. Matocha, F. d. Kammer, J. M. Unrine, Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment. Environ. Pollut. 2013, 182, 141.
Behavior of Ag nanoparticles in soil: effects of particle surface coating, aging and sewage sludge amendment.CrossRef | 1:CAS:528:DC%2BC3sXhsFensb7J&md5=d36c3b6075790f28b4a6472efbbd38e9CAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (970 KB) Export Citation Cited By (4)

View Altmetrics