Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

The decreasing aggregation of nanoscale zero-valent iron induced by trivalent chromium

Danlie Jiang A B , Xialin Hu A C , Rui Wang A , Yujing Wang B and Daqiang Yin A C D

A Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

B School of Materials and Chemical Engineering, Xi’an Technological University, 4 Jinhua Road, Xi’an 710032, China.

C State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

D Corresponding author. Email: yindq@tongji.edu.cn

Environmental Chemistry - http://dx.doi.org/10.1071/EN16144
Submitted: 10 June 2016  Accepted: 2 November 2016   Published online: 15 December 2016

Environmental context. Nanoscale zero-valent iron is a promising material for environmental engineering and groundwater remediation. However, the environmental behaviour and fate of nanoscale iron that is essential for applications and risk assessment is still uncertain. We report a study on the aggregation behaviour and mobility of nanoscale iron in the aquatic environment using colloidal chemical methods.

Abstract. Despite high magnetisation, nanoscale zero-valent iron (nZVI) exhibits weak aggregation when treating hexavalent chromium (CrVI) (0.02 mmol L–1) under anaerobic circumstances, which leads to the enhancement of its mobility in the aquatic environment. To elucidate such an unexpected phenomenon, the influences of different valences of chromium on the aggregation behaviour of nZVI were examined. Results indicate that trivalent chromium (CrIII) greatly decreases the aggregation of nZVI in acidic conditions (pH 5), while little influence is observed at a higher pH (pH 7). We suggest that such influences are mainly a result of precipitation on the surface of nZVI particles, which prevents the formation of chain-like aggregates. Accordingly, although the particles are highly magnetic (magnetite content >70 %, saturation magnetisation = 363 kA m–1), the magnetic attraction between aggregates and particles is not strong enough to promote further aggregation. Furthermore, the Cr(OH)3 shell blocks collisions between particles and greatly enhances their zeta-potential, which also assists in preventing aggregation. Our results suggest that heavy metals can significantly affect the environmental behaviours of nanoparticles.

Additional keywords: colloidal stability, (E)DLVO theory, valence state.


References

[1]  W. Yan, H.-L. Lien, B. E. Koel, W.-X. Zhang, Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ. Sci. Process. Impacts 2013, 15, 63.
Iron nanoparticles for environmental clean-up: recent developments and future outlook.CrossRef | 1:CAS:528:DC%2BC38XhvFWgt73F&md5=b127a8e456895c2b3d5fd90a6633329dCAS | open url image1

[2]  N. C. Mueller, J. Braun, J. Bruns, M. Cernik, P. Rissing, D. Rickerby, B. Nowack, Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ. Sci. Pollut. Res. 2012, 19, 550.
Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe.CrossRef | 1:CAS:528:DC%2BC38Xos1ykug%3D%3D&md5=0bd1366470c30539dbf03094d50be37aCAS | open url image1

[3]  X. Li, D. G. Brown, W. Zhang, Stabilization of biosolids with nanoscale zero-valent iron (nZVI). J. Nanopart. Res. 2007, 9, 233.
Stabilization of biosolids with nanoscale zero-valent iron (nZVI).CrossRef | 1:CAS:528:DC%2BD2sXis1eqs7s%3D&md5=47c3f7c50c1db121d2716ba1ae9e9d0fCAS | open url image1

[4]  S. Li, W. Wang, W. Yan, W.-X. Zhang, Nanoscale zero-valent iron (nZVI) for treatment of concentrated Cu(II) wastewater a field demonstration. Environ. Sci. Process. Impacts 2014, 16, 524.
| 1:CAS:528:DC%2BC2cXjt1amtrc%3D&md5=336899977950a4898992b8ab3a9e9e8aCAS | open url image1

[5]  T. Liu, L. Zhao, D. Sun, X. Tan, Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. J. Hazard. Mater. 2010, 184, 724.
Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater.CrossRef | 1:CAS:528:DC%2BC3cXht12gtbbM&md5=be8476f5ed39a37ea1e51d373635b2c4CAS | open url image1

[6]  C. M. Kocur, A. I. Chowdhury, N. Sakulchaicharoen, H. K. Boparai, K. P. Weber, P. Sharma, M. M. Krol, L. Austrins, C. Peace, B. E. Sleep, D. M. O′Carroll, Characterization of nZVI mobility in a field scale test. Environ. Sci. Technol. 2014, 48, 2862.
Characterization of nZVI mobility in a field scale test.CrossRef | 1:CAS:528:DC%2BC2cXhsFeqtbk%3D&md5=f5f07b5f12c845d0ca07f9fe2fc48f0dCAS | open url image1

[7]  C. M. Kocur, D. M. O’Carroll, B. E. Sleep, Impact of nZVI stability on mobility in porous media. J. Contam. Hydrol. 2012, 145C, 17. open url image1

[8]  B. Karn, T. Kuiken, M. Otto, Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ. Health Perspect. 2009, 117, 1823.
Nanotechnology and in situ remediation: a review of the benefits and potential risks.CrossRef | open url image1

[9]  M. R. Wiesner, G. V. Lowry, K. L. Jones, M. F. Hochella, R. T. Di Giulio, E. Casman, E. S. Bernhardt, Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009, 43, 6458.
Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials.CrossRef | 1:CAS:528:DC%2BD1MXptFCiur0%3D&md5=6efc9a754da19faf06546963e784b6a0CAS | open url image1

[10]  D. Haoran, I. M. Lo, Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Res. 2013, 47, 419.
Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.CrossRef | open url image1

[11]  H. Dong, I. M. Lo, Transport of surface-modified nano zero-valent iron (SM-NZVI) in saturated porous media: effects of surface stabilizer type, subsurface geochemistry, and contaminant loading. Water Air Soil Pollut. 2014, 225, 2107.
Transport of surface-modified nano zero-valent iron (SM-NZVI) in saturated porous media: effects of surface stabilizer type, subsurface geochemistry, and contaminant loading.CrossRef | open url image1

[12]  X.-Q. Li, J. Cao, W.-X. Zhang, Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Ind. Eng. Chem. Res. 2008, 47, 2131.
Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS).CrossRef | 1:CAS:528:DC%2BD1cXivVSktLg%3D&md5=3691b45ee4f0e230c6f89b23897d137eCAS | open url image1

[13]  R. J. Crawford, I. H. Harding, D. E. Mainwaring, The zeta potential of iron and chromium hydrous oxides during adsorption and coprecipitation of aqueous heavy metals. J. Colloid Interface Sci. 1996, 181, 561.
The zeta potential of iron and chromium hydrous oxides during adsorption and coprecipitation of aqueous heavy metals.CrossRef | 1:CAS:528:DyaK28XksFGjs7s%3D&md5=8ec6ceac9163501b078dc49a514abe54CAS | open url image1

[14]  M. Erdemoğlu, M. Sarıkaya, Effects of heavy metals and oxalate on the zeta potential of magnetite. J. Colloid Interface Sci. 2006, 300, 795.
Effects of heavy metals and oxalate on the zeta potential of magnetite.CrossRef | open url image1

[15]  S. Mustafa, S. Tasleem, A. Naeem, M. Safdar, Solvent effect on the electrophoretic mobility and adsorption of Cu on iron oxide. Colloids Surf. A Physicochem. Eng. Asp. 2008, 330, 8.
Solvent effect on the electrophoretic mobility and adsorption of Cu on iron oxide.CrossRef | 1:CAS:528:DC%2BD1cXht1Kjt7rL&md5=5c6d1ce1947a70b02749d117f50ebf1fCAS | open url image1

[16]  T. Phenrat, N. Saleh, K. Sirk, R. D. Tilton, G. V. Lowry, Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 2007, 41, 284.
Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions.CrossRef | 1:CAS:528:DC%2BD28XhtlCit7nJ&md5=162371389dc6a7ef762a02ee37e87dd1CAS | open url image1

[17]  N. Saleh, H. J. Kim, T. Phenrat, K. Matyjaszewski, R. D. Tilton, G. V. Lowry, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol. 2008, 42, 3349.
Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns.CrossRef | 1:CAS:528:DC%2BD1cXkt1ykurY%3D&md5=17dd0e2b06f9b0436556c2e8e373c860CAS | open url image1

[18]  D. W. Elliott, W.-X. Zhang, Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol. 2001, 35, 4922.
Field assessment of nanoscale bimetallic particles for groundwater treatment.CrossRef | 1:CAS:528:DC%2BD3MXot1yhtr0%3D&md5=a4bc292116f3f7cc6a941bb8499983b2CAS | open url image1

[19]  Y. Liu, T. Phenrat, G. V. Lowry, Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ. Sci. Technol. 2007, 41, 7881.
Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.CrossRef | 1:CAS:528:DC%2BD2sXhtFKksr3F&md5=aaa74c8f3ea86817c7e91026beae070cCAS | open url image1

[20]  D. Jiang, X. Hu, R. Wang, D. Yin, Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors. Chemosphere 2015, 122, 8.
Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.CrossRef | 1:CAS:528:DC%2BC2cXhvFGisrbE&md5=7b164afe81489ca784d4ebeab62cbeb4CAS | open url image1

[21]  K. J. M. Bishop, C. E. Wilmer, S. Soh, B. A. Grzybowski, Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600.
Nanoscale forces and their uses in self-assembly.CrossRef | 1:CAS:528:DC%2BD1MXpsV2ltLg%3D&md5=f3920cc8f4da8776f68fb8ec73b7ef35CAS | open url image1

[22]  T. Y. Liu, Z. L. Wang, X. X. Yan, B. Zhang, Removal of mercury(II) and chromium(VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron. Chem. Eng. J. 2014, 245, 34.
Removal of mercury(II) and chromium(VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron.CrossRef | 1:CAS:528:DC%2BC2cXmtVagsLg%3D&md5=13b095d7fe0096b6402b125716c6eb9dCAS | open url image1

[23]  K. Yin, I. M. C. Lo, H. Dong, P. Rao, M. S. H. Mak, Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: aggregation, sedimentation, and contaminant desorption. J. Hazard. Mater. 2012, 227–228, 1185.
Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: aggregation, sedimentation, and contaminant desorption.CrossRef | open url image1

[24]  M. Chen, H.-H. Cai, F. Yang, D. Lin, P.-H. Yang, J. Cai, Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles. Spectrochim. Acta A 2014, 118, 776.
Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles.CrossRef | 1:CAS:528:DC%2BC2cXjtlahsA%3D%3D&md5=bd0a52c8faf1704cff09c5e02144ab60CAS | open url image1

[25]  J. E. Martin, A. A. Herzing, W. L. Yan, X. Q. Li, B. E. Koel, C. J. Kiely, W.-x. Zhang, Determination of the oxide layer thickness in core–shell zerovalent iron nanoparticles. Langmuir 2008, 24, 4329.
Determination of the oxide layer thickness in core–shell zerovalent iron nanoparticles.CrossRef | 1:CAS:528:DC%2BD1cXisVCnsbo%3D&md5=b33b6db2436a5062c2ed7bf7972af08bCAS | open url image1

[26]  Y. Li, Z. Xiu, T. Li, Z. Jin, Stabilization of Fe0 nanoparticles with silica for enhanced transport and remediation of hexavalent chromium in groundwater. J. Environ. Sci. 2011, 23, 1211.
Stabilization of Fe0 nanoparticles with silica for enhanced transport and remediation of hexavalent chromium in groundwater.CrossRef | 1:CAS:528:DC%2BC3MXhtVyqsr7M&md5=73866556a9d1cfa678b6f0cd05574d90CAS | open url image1

[27]  J. K. Kiptoo, J. C. Ngila, G. M. Sawula, Speciation studies of nickel and chromium in wastewater from an electroplating plant. Talanta 2004, 64, 54.
Speciation studies of nickel and chromium in wastewater from an electroplating plant.CrossRef | 1:CAS:528:DC%2BD2cXmtlyktbs%3D&md5=fa4229f82744274bb149f1f67acd6fb1CAS | open url image1

[28]  H. Ohshima, Electrical Phenomena at Interfaces and Biointerfaces: Fundamentals and Applications in Nano-, Biol.-, and Environmental Sciences 2012 (Wiley: Hoboken, NJ).

[29]  X. Liu, M. Wazne, T. Chou, R. Xiao, S. Xu, Influence of Ca2+ and Suwannee River humic acid on aggregation of silicon nanoparticles in aqueous media. Water Res. 2011, 45, 105.
Influence of Ca2+ and Suwannee River humic acid on aggregation of silicon nanoparticles in aqueous media.CrossRef | 1:CAS:528:DC%2BC3cXhsFSqtbvO&md5=a85b1f55d25e77f13d5138f5e15ace96CAS | open url image1

[30]  Y.-H. Shih, C.-M. Zhuang, Y.-H. Peng, C.-H. Lin, Y.-M. Tseng, The effect of inorganic ions on the aggregation kinetics of lab-made TiO2 nanoparticles in water. Sci. Total Environ. 2012, 435–436, 446.
The effect of inorganic ions on the aggregation kinetics of lab-made TiO2 nanoparticles in water.CrossRef | open url image1

[31]  E. M. Hotze, T. Phenrat, G. V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909.
Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment.CrossRef | 1:CAS:528:DC%2BC3cXhsVKlu7zI&md5=8c9230e402f51e5189d4fb12629372dbCAS | open url image1

[32]  M. Gheju, Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut. 2011, 222, 103.
Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems.CrossRef | 1:CAS:528:DC%2BC3MXhsVWms7fL&md5=2bd889c22654440900889e42c2496b33CAS | open url image1

[33]  D. W. Blowes, C. J. Ptacek, J. L. Jambor, In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies. Environ. Sci. Technol. 1997, 31, 3348.
In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies.CrossRef | 1:CAS:528:DyaK2sXmvValt7c%3D&md5=c0f557a1a0e337b14e316d2823ef972eCAS | open url image1

[34]  R. Rakhunde, L. Deshpande, H. D. Juneja, Chemical speciation of chromium in water: a review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 776.
Chemical speciation of chromium in water: a review.CrossRef | 1:CAS:528:DC%2BC38XhsVWgs7w%3D&md5=2a18159de5bb24fd800a8b8d08c576f3CAS | open url image1

[35]  W.-S. Liu, Y.-H. Peng, C.-E. Shiung, Y.-H. Shih, The effect of cations on the aggregation of commercial ZnO nanoparticle suspension. J. Nanopart. Res. 2012, 14, 1259.
The effect of cations on the aggregation of commercial ZnO nanoparticle suspension.CrossRef | open url image1

[36]  H. Cho, D. Oh, K. Kim, A study on removal characteristics of heavy metals from aqueous solution by fly ash. J. Hazard. Mater. 2005, 127, 1875.
A study on removal characteristics of heavy metals from aqueous solution by fly ash.CrossRef | open url image1

[37]  D. Rai, B. M. Sass, D. A. Moore, Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 1987, 26, 345.
Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide.CrossRef | 1:CAS:528:DyaL2sXls1KgtA%3D%3D&md5=7296f1cdd1e8d5d1ff05b41fadf117e2CAS | open url image1

[38]  X.-Q. Li, W.-X. Zhang, Sequestration of metal cations with zerovalent iron nanoparticles – a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J. Phys. Chem. C 2007, 111, 6939.
Sequestration of metal cations with zerovalent iron nanoparticles – a study with high resolution X-ray photoelectron spectroscopy (HR-XPS).CrossRef | 1:CAS:528:DC%2BD2sXksFarsbc%3D&md5=ea5321b09fae6d4f3c22c90f1142ca4eCAS | open url image1

[39]  T. Phenrat, N. Saleh, K. Sirk, H. J. Kim, R. D. Tilton, G. V. Lowry, Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res. 2008, 10, 795.
Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation.CrossRef | 1:CAS:528:DC%2BD1cXkvFajtrg%3D&md5=292a441dae9d9491845a396a9492c007CAS | open url image1

[40]  F. He, D. Zhao, C. Paul, Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res. 2010, 44, 2360.
Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.CrossRef | 1:CAS:528:DC%2BC3cXjtFOitr8%3D&md5=0b5c92777bb4ee05bc76ab6ea22fa3c4CAS | open url image1



Supplementary MaterialSupplementary Material (883 KB) Export Citation