Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

In situ detection of intermediates from the interaction of dissolved sulfide and manganese oxides with a platinum electrode in aqueous systems

Yao Luo A B , Yougang Shen A B , Lihu Liu A , Jun Hong A , Guohong Qiu A C , Wenfeng Tan A and Fan Liu A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.

B These authors contributed equally to this work as the first authors.

C Corresponding author. Email: qiugh@mail.hzau.edu.cn

Environmental Chemistry 14(3) 178-187 https://doi.org/10.1071/EN16204
Submitted: 6 October 2016  Accepted: 24 January 2017   Published: 24 February 2017

Environmental context. Dissolved sulfide results in soil acidification and subsequent contaminant leaching via oxidation processes, usually involving manganese oxides. In this work, redox processes were monitored in situ by cyclic voltammetry and HS concentrations were semi-quantitatively determined. The method provides qualitative and semi-quantitative assessment for dissolved sulfide and its oxidation intermediates in aqueous systems.

Abstract. Dissolved sulfide can be oxidised by manganese oxides in supergene environments, while the intermediates including S0, S2O32– and SO32– are easily oxidised by oxygen in air, resulting in some experimental errors in conventional analyses. In this work, the electrochemical behaviours of HS, S2O32– and SO32– on a platinum electrode were studied by cyclic voltammetry and constant potential electrolysis, and in situ detection of the intermediates was conducted in aqueous systems of HS and manganese oxides. The results showed that HS was first oxidised to S0, and then transformed to SO42–. The peak current for the oxidation of HS to S0 had a positive linear correlation with the used starting HS concentration. S2O32– and SO32– were directly electrochemically oxidised to SO42–. The oxidation current peak potentials at 0, 0.45 and 0.7 V were respectively observed for HS, S2O32– and SO32– at pH 12.0. Cyclic voltammetry was conducted to monitor the redox processes of HS and manganese oxides. The oxidation peak current of HS to S0 decreased, and that of S2O32– to SO42– was observed to increase as the reaction proceeded. The rate of the decrease of the oxidation peak current of HS indicated that the oxidation activity followed the order of birnessite > todorokite > manganite.

Additional keywords: cyclic voltammetry, redox behaviour, geochemistry, birnessite, todorokite, manganite.


References

[1]  X. J. Xu, C. Chen, A. J. Wang, W. Q. Guo, X. Zhou, D.-J. Lee, N. Q. Ren, J.-S. Chang, Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: modeling and experimental validation. J. Hazard. Mater. 2014, 264, 16.
Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: modeling and experimental validation.CrossRef | 1:CAS:528:DC%2BC3sXitVWjtr3O&md5=601b172a8744636fe89ccab4104c8417CAS |

[2]  T. V. Mishanina, M. Libiad, R. Banerjee, Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat. Chem. Biol. 2015, 11, 457.
Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways.CrossRef | 1:CAS:528:DC%2BC2MXht1ygsbrL&md5=2f09d026fbed21ac95f372ca2b316166CAS |

[3]  M. Sima, B. Dold, L. Frei, M. Senila, D. Balteanu, J. Zobrist, Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania. J. Hazard. Mater. 2011, 189, 624.
Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania.CrossRef | 1:CAS:528:DC%2BC3MXmtlems7w%3D&md5=e051349d80adb7f5b42b1d42fd38f3caCAS |

[4]  B. G. Ateya, F. M. Al Kharafi, A. M. El-Shamy, A. Y. Saad, R. M. Abdalla, Electrochemical desulfurization of geothermal fluids under high temperature and pressure. J. Appl. Electrochem. 2009, 39, 383.
Electrochemical desulfurization of geothermal fluids under high temperature and pressure.CrossRef | 1:CAS:528:DC%2BD1MXhvVCktL8%3D&md5=092d057e82e986066ce24ec16ef79a75CAS |

[5]  R. E. Trouwborst, B. G. Clement, B. M. Tebo, B. T. Glazer, G. W. Luther, Soluble Mn(III) in suboxic zones. Science 2006, 313, 1955.
Soluble Mn(III) in suboxic zones.CrossRef | 1:CAS:528:DC%2BD28XhtVSnsrnI&md5=c627ed60e84c1538e78f362f4b54c44bCAS |

[6]  G. W. Luther, C. E. Reimers, D. B. Nuzzio, D. Lovalvo, In situ deployment of voltammetric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved O2, Mn, Fe, S(–2), and pH in porewaters. Environ. Sci. Technol. 1999, 33, 4352.
In situ deployment of voltammetric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved O2, Mn, Fe, S(–2), and pH in porewaters.CrossRef | 1:CAS:528:DyaK1MXms1yjsro%3D&md5=4ae18cec4cb1424f87d2ade012f8bc98CAS |

[7]  J. Herszage, M. dos Santos Afonso, Mechanism of hydrogen sulfide oxidation by manganese(IV) oxide in aqueous solutions. Langmuir 2003, 19, 9684.
Mechanism of hydrogen sulfide oxidation by manganese(IV) oxide in aqueous solutions.CrossRef | 1:CAS:528:DC%2BD3sXnvFOiurs%3D&md5=f55cb4aec3ebacaafcf2e66c227dea1fCAS |

[8]  G. H. Qiu, Q. Li, Y. Yu, X. H. Feng, W. F. Tan, F. Liu, Oxidation behavior and kinetics of sulfide by synthesized manganese oxide minerals. J. Soils Sediments 2011, 11, 1323.
Oxidation behavior and kinetics of sulfide by synthesized manganese oxide minerals.CrossRef | 1:CAS:528:DC%2BC3MXhsVOksrrL&md5=461ee02dac58273045a34c3551919c01CAS |

[9]  W. S. Yao, F. J. Millero, The rate of sulfide oxidation by δMnO2 in seawater. Geochim. Cosmochim. Acta 1993, 57, 3359.
The rate of sulfide oxidation by δMnO2 in seawater.CrossRef | 1:CAS:528:DyaK3sXmtVOhsrk%3D&md5=7679052a14685ca8c1fbf89dcee1cb48CAS |

[10]  P. S. Nico, R. J. Zasoski, Mn(III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on δ-MnO2. Environ. Sci. Technol. 2001, 35, 3338.
Mn(III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on δ-MnO2.CrossRef | 1:CAS:528:DC%2BD3MXltF2lu70%3D&md5=8f5ca82cce7d81f001b46ced5909e4bbCAS |

[11]  T. Y. Gao, Y. Shi, F. Liu, Y. S. Zhang, X. H. Feng, W. F. Tan, G. H. Qiu, Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems. J. Hazard. Mater. 2015, 290, 106.
Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems.CrossRef | 1:CAS:528:DC%2BC2MXjtVyrtr4%3D&md5=8b893402100118c5de185ce49d1497e4CAS |

[12]  T. F. Rozan, S. M. Theberge, G. Luther, Quantifying elemental sulfur (S0), bisulfide (HS) and polysulfides (Sx2–) using a voltammetric method. Anal. Chim. Acta 2000, 415, 175.
Quantifying elemental sulfur (S0), bisulfide (HS) and polysulfides (Sx2–) using a voltammetric method.CrossRef | 1:CAS:528:DC%2BD3cXjt1Squr4%3D&md5=cfe127d0faf04ef27287f2fe67575208CAS |

[13]  I. Ciglenečki, M. Marguš, E. Bura-Nakić, I. Milanović, Electroanalytical methods in characterization of sulfur species in aqueous environment. J. Electrochem. Sci. Eng. 2014, 4, 155.
Electroanalytical methods in characterization of sulfur species in aqueous environment.CrossRef |

[14]  E. Bura-Nakić, E. Viollier, I. Ciglenečki, Electrochemical and colorimetric measurement show the dominant role of FeS in a permanently anoxic lake. Environ. Sci. Technol. 2013, 47, 741.
Electrochemical and colorimetric measurement show the dominant role of FeS in a permanently anoxic lake.CrossRef |

[15]  E. Bura-Nakić, G. R. Helz, I. Ciglenečki, B. Ćosović, Reduced sulfur species in a stratified seawater lake (Rogoznica Lake, Croatia); seasonal variations and argument for organic carriers of reactive sulfur. Geochim. Cosmochim. Acta 2009, 73, 3738.
Reduced sulfur species in a stratified seawater lake (Rogoznica Lake, Croatia); seasonal variations and argument for organic carriers of reactive sulfur.CrossRef |

[16]  M. Taillefert, G. W. Luther, D. B. Nuzzio, The application of electrochemical tools for in situ measurements in aquatic systems. Electroanalysis 2000, 12, 401.
The application of electrochemical tools for in situ measurements in aquatic systems.CrossRef | 1:CAS:528:DC%2BD3cXjtFWlsbc%3D&md5=5271456d98d463c83781deb085268b2dCAS |

[17]  X. D. Cao, H. C. Xu, S. Ding, Y. K. Ye, X. G. Ge, L. Yu, Electrochemical determination of sulfide in fruits using alizarin-reduced graphene oxide nanosheets modified electrode. Food Chem. 2016, 194, 1224.
Electrochemical determination of sulfide in fruits using alizarin-reduced graphene oxide nanosheets modified electrode.CrossRef | 1:CAS:528:DC%2BC2MXhsVaqsL%2FN&md5=d8cf3dc79f0db42cae1f456b2fb6376eCAS |

[18]  Z. Grubač, M. Metikoš-Huković, EIS study of solid-state transformations in the passivation process of bismuth in sulfide solution. J. Electroanal. Chem. 2004, 565, 85.
EIS study of solid-state transformations in the passivation process of bismuth in sulfide solution.CrossRef |

[19]  R. M. McKenzie, The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral. Mag. 1971, 38, 493.
The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese.CrossRef | 1:CAS:528:DyaE38XitVOmsQ%3D%3D&md5=266b082eb01b56f3490c80ff3ec81ac9CAS |

[20]  D. Krznarić, I. Ciglenečki-Jušić, Electrochemical processes of sulfide in NaCl electrolyte solutions on mercury electrode. Electroanalysis 2005, 17, 1317.
Electrochemical processes of sulfide in NaCl electrolyte solutions on mercury electrode.CrossRef |

[21]  M. Arenz, V. Stamenkovic, T. J. Schmidt, K. Wandelt, P. N. Ross, N. M. Markovic, The effect of specific chloride adsorption on the electrochemical behavior of ultrathin Pd films deposited on Pt(111) in acid solution. Surf. Sci. 2003, 523, 199.
The effect of specific chloride adsorption on the electrochemical behavior of ultrathin Pd films deposited on Pt(111) in acid solution.CrossRef | 1:CAS:528:DC%2BD38XpsFCjsLg%3D&md5=78132f2b633ea77992dcce4c3f38635aCAS |

[22]  J. D. Hem, Rates of manganese oxidation in aqueous systems. Geochim. Cosmochim. Acta 1981, 45, 1369.
Rates of manganese oxidation in aqueous systems.CrossRef | 1:CAS:528:DyaL3MXmt12nsb4%3D&md5=52969cb342b7fb36fe2c3059d8f18083CAS |

[23]  W. E. Caldwell, F. C. Krauskopf, Reduction reactions with calcium hydride. I. Rapid determination of sulfur in insoluble sulfates. J. Am. Chem. Soc. 1929, 51, 2936.
Reduction reactions with calcium hydride. I. Rapid determination of sulfur in insoluble sulfates.CrossRef | 1:CAS:528:DyaB1MXkslChtQ%3D%3D&md5=bc242810f73fa5e21c3e8eeac710652aCAS |

[24]  D. Rickard, G. W. Luther, Metal sulfide complexes and clusters. Rev. Mineral. Geochem. 2006, 61, 421.
Metal sulfide complexes and clusters.CrossRef | 1:CAS:528:DC%2BD28XosFagtro%3D&md5=8c462d5630b68783320a56e0ab7755acCAS |

[25]  E. Bura-Nakic, A. Róka, I. Ciglenecki, G. Inzelt, Electrochemical nanogravimetric studies of sulfur/sulfide redox processes on gold surface. J. Solid State Electrochem. 2009, 13, 1935.
Electrochemical nanogravimetric studies of sulfur/sulfide redox processes on gold surface.CrossRef | 1:CAS:528:DC%2BD1MXht1KrtbfO&md5=941cb4177683092d5c439fcd33b5d6f9CAS |

[26]  B. Miller, A. Chen, Effect of concentration and temperature on electrochemical oscillations during sulfide oxidation on Ti/Ta2O5-IrO2 electrodes. Electrochim. Acta 2005, 50, 2203.
Effect of concentration and temperature on electrochemical oscillations during sulfide oxidation on Ti/Ta2O5-IrO2 electrodes.CrossRef | 1:CAS:528:DC%2BD2MXitV2gsbs%3D&md5=d85fa21376c550faa573b4eaf7b93d6cCAS |

[27]  N. S. A. Manan, L. Aldous, Y. Alias, P. Murray, L. J. Yellowlees, M. C. Lagunas, C. Hardacre, Electrochemistry of sulfur and polysulfides in ionic liquids. J. Phys. Chem. B 2011, 115, 13873.
Electrochemistry of sulfur and polysulfides in ionic liquids.CrossRef | 1:CAS:528:DC%2BC3MXhtlSltLrN&md5=2d5c1d2860e3631c7d0bd6c3d405b97eCAS |

[28]  D.-H. Han, B.-S. Kim, S.-J. Choi, Y. Jung, J. Kwak, S.-M. Park, Time-resolved in situ spectroelectrochemical study on reduction of sulfur in N,N′-dimethylformamide. J. Electrochem. Soc. 2004, 151, E283.
Time-resolved in situ spectroelectrochemical study on reduction of sulfur in N,N′-dimethylformamide.CrossRef | 1:CAS:528:DC%2BD2cXnt1ygsLo%3D&md5=f082274ef77b391fbde9d3c09a8895eaCAS |

[29]  G. H. Kelsall, I. Thompson, Redox chemistry of H2S oxidation by the British gas stretford process Part. II: electrochemical behaviour of aqueous hydrosulphide (HS) solutions. J. Appl. Electrochem. 1993, 23, 287.
Redox chemistry of H2S oxidation by the British gas stretford process Part. II: electrochemical behaviour of aqueous hydrosulphide (HS) solutions.CrossRef | 1:CAS:528:DyaK3sXisVegtr0%3D&md5=5873c2327a935c1578197fff640e4662CAS |

[30]  N. Amini, M. Shamsipur, M. B. Gholivand, Electrocatalytic oxidation of sulfide and electrochemical behavior of chloropromazine based on organic-inorganic hybrid nanocomposite. J. Mol. Catal. Chem. 2015, 396, 245.
Electrocatalytic oxidation of sulfide and electrochemical behavior of chloropromazine based on organic-inorganic hybrid nanocomposite.CrossRef | 1:CAS:528:DC%2BC2cXhsFyrtL7I&md5=1de8f752c47b13b133472d1fe5c5aaa6CAS |

[31]  S. Zhang, M. J. Nicol, An electrochemical study of the dissolution of gold in thiosulfate solutions Part I: alkaline solutions. J. Appl. Electrochem. 2003, 33, 767.
An electrochemical study of the dissolution of gold in thiosulfate solutions Part I: alkaline solutions.CrossRef | 1:CAS:528:DC%2BD3sXmvFSiu7o%3D&md5=4bf4805d245fc3dd79663605b6462e0eCAS |

[32]  J. B. Raoof, R. Ojani, H. Karimi-Maleh, Electrocatalytic oxidation of thiosulfate at 2,7-bis(ferrocenylethyl)-fluoren-9-one-modified carbon paste electrode (2,7-BFEFMCPE): application to the catalytic determination of thiosulfate in real sample. Chin. Chem. Lett. 2010, 21, 1462.
Electrocatalytic oxidation of thiosulfate at 2,7-bis(ferrocenylethyl)-fluoren-9-one-modified carbon paste electrode (2,7-BFEFMCPE): application to the catalytic determination of thiosulfate in real sample.CrossRef | 1:CAS:528:DC%2BC3cXhtlSnu7bI&md5=4d4944a0649681f1f677e73fea9f1897CAS |

[33]  S.-M. Chen, S.-W. Chiu, The electrocatalytic transformation of HS, S2O32–, S4O62– and SO32– to SO42– by water-soluble iron porphyrins. Electrochim. Acta 2000, 45, 4399.
The electrocatalytic transformation of HS, S2O32–, S4O62– and SO32– to SO42– by water-soluble iron porphyrins.CrossRef | 1:CAS:528:DC%2BD3cXmsFKltro%3D&md5=a9224d1de9d111f89b2ea39aab7b0e3eCAS |

[34]  G. H. Qiu, H. Wen, Q. Guo, Y. H. Hu, D. Yang, F. Liu, Electrochemical preparation of nanosized manganese dioxides from manganese chloride solutions. Ionics 2011, 17, 209.
Electrochemical preparation of nanosized manganese dioxides from manganese chloride solutions.CrossRef | 1:CAS:528:DC%2BC3MXks1Wltrw%3D&md5=2461b1558eb771a8e5173088feeefef7CAS |

[35]  A. A. Ensafi, H. Karimi-Maleh, Ferrocenedicarboxylic acid modified multiwall carbon nanotubes paste electrode for voltammetric determination of sulfite. Int. J. Electrochem. Sci. 2010, 5, 392.
| 1:CAS:528:DC%2BC3cXkvFSnu74%3D&md5=edd42d2cde7654ca36ef9604c5008332CAS |

[36]  A. Safavi, N. Maleki, S. Momeni, F. Tajabadi, Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: application to the analysis of some real samples. Anal. Chim. Acta 2008, 625, 8.
Highly improved electrocatalytic behavior of sulfite at carbon ionic liquid electrode: application to the analysis of some real samples.CrossRef | 1:CAS:528:DC%2BD1cXhtVCnsr7E&md5=dc4fcbed1104968feb41c7f205f638b1CAS |

[37]  A. Isaac, C. Livingstone, A. J. Wain, R. G. Compton, J. Davis, Electroanalytical methods for the determination of sulfite in food and beverages. TrAC, Trends Anal. Chem. 2006, 25, 589.
| 1:CAS:528:DC%2BD28Xlt12nsbs%3D&md5=71724cc37c91b65b76a88804cc312d22CAS |

[38]  W. X. Zhang, Z. H. Yang, Y. Liu, S. P. Tang, X. Z. Han, M. Chen, Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method. J. Cryst. Growth 2004, 263, 394.
Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method.CrossRef | 1:CAS:528:DC%2BD2cXhsVGqu7Y%3D&md5=fb80f3d8a406d3fabeb60757349bc38fCAS |

[39]  T. Kohler, T. Armbruster, E. Libowitzky, Hydrogen bonding and Jahn–Teller distortion in groutite, α-MnOOH, and manganite, γ-MnOOH, and their relations to the manganese dioxides ramsdellite and pyrolusite. J. Solid State Chem. 1997, 133, 486.
Hydrogen bonding and Jahn–Teller distortion in groutite, α-MnOOH, and manganite, γ-MnOOH, and their relations to the manganese dioxides ramsdellite and pyrolusite.CrossRef | 1:CAS:528:DyaK2sXotV2jtbo%3D&md5=3558819379fb51e381586d3669312745CAS |

[40]  D. Peak, R. G. Ford, D. L. Sparks, An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J. Colloid Interface Sci. 1999, 218, 289.
An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite.CrossRef | 1:CAS:528:DyaK1MXlvVGmur8%3D&md5=6da322d47727d344387f02298bc558cfCAS |

[41]  M. F. Zhou, L. N. Zhang, L. M. Shao, W. N. Wang, K. N. Fan, Q. Z. Qin, Reactions of Mn with H2O and MnO with H2. Matrix-isolation FTIR and quantum chemical studies. J. Phys. Chem. A 2001, 105, 5801.
Reactions of Mn with H2O and MnO with H2. Matrix-isolation FTIR and quantum chemical studies.CrossRef | 1:CAS:528:DC%2BD3MXjvVOgs7w%3D&md5=02b4be2e2be50927ee2c866e6b886217CAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (345 KB) Export Citation

View Altmetrics