Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Catalytic activity and mechanism of ordered mesoporous iron oxides on hydrogen peroxide for degradation of norfloxacin in water at neutral pH

Zhen Yuan A , Minghao Sui A B , Jianrui Yang A , Pan Li A , Zhiran Liu A and Li Sheng A
+ Author Affiliations
- Author Affiliations

A School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

B Corresponding author. Email: minghaosui@tongji.edu.cn

Environmental Chemistry 14(6) 361-369 https://doi.org/10.1071/EN17119
Submitted: 26 June 2017  Accepted: 10 August 2017   Published: 28 November 2017

Environmental context. Norfloxacin is widely used as a human and veterinary medicine for its broad-spectrum antibacterial activity. It is chemically stable, rendering it difficult to remove from water using the traditional water and wastewater treatment techniques. We investigate the use of iron oxide catalysts for the degradation of norfloxacin in water prior to its release into the environment.

Abstract. The catalytic activity of ordered mesoporous Fe2O3 (om-Fe2O3) on H2O2 oxidation of norfloxacin (NOR) under neutral pH conditions in water was investigated. Using non-ordered-mesoporous Fe2O3 as a reference (nom-Fe2O3), om-Fe2O3 with high specific surface area of 176.4 m2 g−1 and a uniform pore structure exhibited high catalytic activity in the decomposition of H2O2 as well as the degradation of NOR at neutral pH. Compared with nom-Fe2O3, om-Fe2O3 promoted the decomposition of H2O2 differently. The adsorption capacity of om-Fe2O3 for NOR was much higher than that of nom-Fe2O3. The adsorption efficiency of NOR on om-Fe2O3 accounted for 60.2–64.9 % of the degradation efficiency in om-Fe2O3/H2O2. tert-Butanol (TBA), which is resistant to adsorption by om-Fe2O3, had no effect on the degradation of NOR by om-Fe2O3/H2O2. However, the presence of tromethamine (TMA), which was favourable to adsorption by om-Fe2O3, inhibited the degradation of NOR significantly. Based on the different effects of TBA and TMA on the degradation of NOR, it is proposed that the catalytic degradation of NOR may occur on the surface of om-Fe2O3. Hydroxyl radicals (·OH) generated may be bound on the surface of om-Fe2O3 without diffusing into aqueous solution. It is proposed that the adsorption of target organic pollutants must be considered when assessing the suitability of the om-Fe2O3/H2O2 process. The mechanism of om-Fe2O3 in promoting H2O2 decomposition into OH was also investigated.

Additional keywords: hydroxyl radicals, oxidation, surface reaction.


References

[1]  Y. W. Kang, K.-Y. Hwang, Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Res. 2000, 34, 2786.
Effects of reaction conditions on the oxidation efficiency in the Fenton process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFWku70%3D&md5=9f72cefe320df4695faf23ff016597d2CAS |

[2]  E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33.
A review of classic Fenton’s peroxidation as an advanced oxidation technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslKjsLw%3D&md5=ceb79f2a17e3fd109b9ddbb455f596cdCAS |

[3]  J. J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1.
Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WhtA%3D%3D&md5=5bff31ae399fbd53c136a3d1b56bea13CAS |

[4]  R. C. C. Costa, M. F. F. Lelis, L. C. A. Oliveira, J. D. Fabris, J. D. Ardisson, R. R. V. A. Rios, C. N. Silva, R. M. Lago, Novel active heterogeneous Fenton system based on Fe3−xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions. J. Hazard. Mater. 2006, 129, 171.
Novel active heterogeneous Fenton system based on Fe3−xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslKms74%3D&md5=9b8077abc5ad8e1d93c1cda3a76c4b82CAS |

[5]  H.-H. Huang, M.-C. Lu, J.-N. Chen, Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Res. 2001, 35, 2291.
Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtV2gsLY%3D&md5=5555345deb121dae89cce333968cbf68CAS |

[6]  A. L.-T. Pham, C. Lee, F. M. Doyle, D. L. Sedlak, A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol. 2009, 43, 8930.
A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleqtLzJ&md5=af74700d44ced8ad8e5973c1ec0fecf2CAS |

[7]  L. C. Oliveira, J. D. Fabris, M. C. Pereira, Iron oxides and their applications in catalytic processes: a review. Quim. Nova 2013, 36, 123.
Iron oxides and their applications in catalytic processes: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1ejsrk%3D&md5=a7b451fe4feb2d9870f7b737bef38cc4CAS |

[8]  S.-S. Lin, M. D. Gurol, Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ. Sci. Technol. 1998, 32, 1417.
Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVSisrY%3D&md5=ff83f4b73ee21d0cdabaab5b3e276475CAS |

[9]  M. Hermanek, R. Zboril, I. Medrik, J. Pechousek, C. Gregor, Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J. Am. Chem. Soc. 2007, 129, 10929.
Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovF2mt74%3D&md5=dbbfb4785006fc7b7183e70f8464bc54CAS |

[10]  R. C. C. Costa, F. C. C. Moura, J. D. Ardisson, J. D. Fabris, R. M. Lago, Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Appl Catal. B: Envi. 2008, 83, 131.
Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1ersLc%3D&md5=2ce314b959563ba0aabef40ef78a4a70CAS |

[11]  Y. S. Jung, W. T. Lim, J. Y. Park, Y. H. Kim, Effect of pH on Fenton and Fenton‐like oxidation. Environ. Technol. 2009, 30, 183.
Effect of pH on Fenton and Fenton‐like oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVWnsLc%3D&md5=4971104b667697debb68138f8c8fa94cCAS |

[12]  W. P. Kwan, B. M. Voelker, Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ. Sci. Technol. 2003, 37, 1150.
Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFChu7k%3D&md5=5e888558343d7723c4e2c8856d5be7b3CAS |

[13]  C. Gregor, M. Hermanek, D. Jancik, J. Pechousek, J. Filip, J. Hrbac, R. Zboril, The effect of surface area and crystal structure on the catalytic efficiency of iron(III) oxide nanoparticles in hydrogen peroxide decomposition. Eur. J. Inorg. Chem. 2010, 2010, 2343.
The effect of surface area and crystal structure on the catalytic efficiency of iron(III) oxide nanoparticles in hydrogen peroxide decomposition.Crossref | GoogleScholarGoogle Scholar |

[14]  C.-B. Wang, W.-X. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31, 2154.
Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlGit7w%3D&md5=d70fbc987d515e0e3d8af9b07c447cdaCAS |

[15]  J. H. Ramirez, F. J. Maldonado-Hódar, A. F. Pérez-Cadenas, C. Moreno-Castilla, C. A. Costa, L. M. Madeira, Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon–Fe catalysts. Appl Catal. B: Envi. 2007, 75, 312.
Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon–Fe catalysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWmtrvI&md5=406f4eb37582ea81410651341ce5336cCAS |

[16]  I. Muthuvel, M. Swaminathan, Highly solar-active Fe(III)-immobilised alumina for the degradation of Acid Violet 7. Sol. Energy Mater. Sol. Cells 2008, 92, 857.
Highly solar-active Fe(III)-immobilised alumina for the degradation of Acid Violet 7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXms1Wqtr4%3D&md5=395507fe2a98b0307235d3c34e3436d7CAS |

[17]  M. Hartmann, S. Kullmann, H. Keller, Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J. Mater. Chem. 2010, 20, 9002.
Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Oqur%2FK&md5=97917a61972c1ed29db0300c5b156486CAS |

[18]  J. Herney-Ramirez, M. A. Vicente, L. M. Madeira, Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Appl Catal. B: Envi. 2010, 98, 10.
Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlyrt7o%3D&md5=8535f38e10fa21a254f1429d812efc10CAS |

[19]  G. Calleja, J. A. Melero, F. Martínez, R. Molina, Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol. Water Res. 2005, 39, 1741.
Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1agsbs%3D&md5=784fa51992106d1b3103940d06a1edb9CAS |

[20]  C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, J. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710.
Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xms1entrs%3D&md5=c3de8f5a5fc6ac55d5eeb903489b46c3CAS |

[21]  Z.-R. Tian, W. Tong, J.-Y. Wang, N.-G. Duan, V. V. Krishnan, S. L. Suib, Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science 1997, 276, 926.
Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt1Wkur8%3D&md5=6910faa309556d322449bf577c9492b0CAS |

[22]  Q.-X. Gao, X.-F. Wang, X.-C. Wu, Y.-R. Tao, J.-J. Zhu, Mesoporous zirconia nanobelts: preparation, characterization and applications in catalytical methane combustion. Microporous Mesoporous Mater. 2011, 143, 333.
Mesoporous zirconia nanobelts: preparation, characterization and applications in catalytical methane combustion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKhtbg%3D&md5=6d73fdfac5365a78a64c83a0593b23dcCAS |

[23]  C. Pérez León, L. Kador, B. Peng, M. Thelakkat, Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-vis, Raman, and FTIR spectroscopies. J. Phys. Chem. B 2006, 110, 8723.
Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-vis, Raman, and FTIR spectroscopies.Crossref | GoogleScholarGoogle Scholar |

[24]  Y. Xia, H. Dai, H. Jiang, L. Zhang, J. Deng, Y. Liu, Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. J. Hazard. Mater. 2011, 186, 84.
Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaqt7Y%3D&md5=37a5c1f6aeda1d7aaa1175cebde2abe4CAS |

[25]  C. M. Miller, R. L. Valentine, Mechanistic studies of surface-catalyzed H2O2 decomposition and contaminant degradation in the presence of sand. Water Res. 1999, 33, 2805.
Mechanistic studies of surface-catalyzed H2O2 decomposition and contaminant degradation in the presence of sand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlaksLw%3D&md5=2d33f0fe8217135df4f4ef4438c7b2a3CAS |

[26]  C.-P. Huang, Y.-H. Huang, Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides. Appl. Catal. A Gen. 2008, 346, 140.
Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosl2ksrs%3D&md5=48dcecae0cc59f01ed42a664e127c308CAS |

[27]  J.-q. Zhang, Y.-h. Dong, Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable-charge soils of China. J. Hazard. Mater. 2008, 151, 833.
Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable-charge soils of China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGntrs%3D&md5=6729dbe24f44fbae73d007db662920a9CAS |

[28]  K. Karthikeyan, M. T. Meyer, Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci. Total Environ. 2006, 361, 196.
Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVCktrY%3D&md5=889a8a19e36d90808a697b7f64905fccCAS |

[29]  T. A. Ternes, A. Joss, H. Siegrist, Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ. Sci. Technol. 2004, 38, 392A.
Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVSms74%3D&md5=19719360ec5cbb8c90f95ae28e087decCAS |

[30]  S. Zorita, L. Mårtensson, L. Mathiasson, Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci. Total Environ. 2009, 407, 2760.
Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVegsLg%3D&md5=22984778e5a11d2da3ac2412af1bbe05CAS |

[31]  F. Jiao, A. Harrison, J.-C. Jumas, A. V. Chadwick, W. Kockelmann, P. G. Bruce, Ordered mesoporous Fe2O3 with crystalline walls. J. Am. Chem. Soc. 2006, 128, 5468.
Ordered mesoporous Fe2O3 with crystalline walls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVaqtbo%3D&md5=4487797f029149bcad4da9fa4e98ae25CAS |

[32]  F. Di Lupo, A. Tuel, C. Francia, G. Meligrana, S. Bodoardo, C. Gerbaldi, Tunable ordered nanostructured alpha-Fe2O3 lithium battery anodes by nanocasting technique using SBA-15 hard silica templates. Int. J. Electrochem. Sci. 2012, 7, 10865.
| 1:CAS:528:DC%2BC38XhslajurzE&md5=435387b68d0d1ac6cfd81ed8adcbf453CAS |

[33]  D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50- to 300-Angstrom pores. Science 1998, 279, 548.
Triblock copolymer syntheses of mesoporous silica with periodic 50- to 300-Angstrom pores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVOitQ%3D%3D&md5=5d744cc2973be2123f8dc4ff39300729CAS |

[34]  J. S. Noh, J. A. Schwarz, Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon 1990, 28, 675.
Effect of HNO3 treatment on the surface acidity of activated carbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltl2it78%3D&md5=8cf62572d0eb8be98834029407b9d158CAS |

[35]  H. Shiraishi, M. Kataoka, Y. Morita, J. Umemoto, Interactions of hydroxyl radicals with tris(hydroxymethyl)aminomethane and Good’s buffers containing hydroxymethyl or hydroxyethyl residues produce formaldehyde. Free Radic. Res. Commun. 1993, 19, 315.
Interactions of hydroxyl radicals with tris(hydroxymethyl)aminomethane and Good’s buffers containing hydroxymethyl or hydroxyethyl residues produce formaldehyde.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVSqurc%3D&md5=295c4a876b21799133432774bf1011b0CAS |

[36]  C. M. Lousada, M. Jonsson, Kinetics, mechanism, and activation energy of H2O2 decomposition on the surface of ZrO2. J. Phys. Chem. C 2010, 114, 11202.
Kinetics, mechanism, and activation energy of H2O2 decomposition on the surface of ZrO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvF2qsrw%3D&md5=557722370f3f7768014ad4c543d969b4CAS |

[37]  S. Zhu, Z. Zhou, D. Zhang, H. Wang, Synthesis of mesoporous amorphous MnO2 from SBA-15 via surface modification and ultrasonic waves. Microporous Mesoporous Mater. 2006, 95, 257.
Synthesis of mesoporous amorphous MnO2 from SBA-15 via surface modification and ultrasonic waves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSit7vK&md5=b077abcadd7c24d53e6951addd5c806bCAS |

[38]  D. J. Mckay, J. S. Wright, How long can you make an oxygen chain? J. Am. Chem. Soc. 1998, 120, 1003.
How long can you make an oxygen chain?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFWhsg%3D%3D&md5=23954d843cafa8428b31fcab67dae617CAS |

[39]  H. Zhang, C.-H. Huang, Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere 2007, 66, 1502.
Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSiu7nF&md5=a2ecd83cd8b470aee239bf18a01676bfCAS |

[40]  F. Haber, J. Weiss, The catalytic decomposition of hydrogen peroxide by iron salts, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1934, pp. 332–51 (The Royal Society of London: London).

[41]  B. Ervens, S. Gligorovski, H. Herrmann, Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions. Phys. Chem. Chem. Phys. 2003, 5, 1811.
Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGks7w%3D&md5=be0fc26444c301dfdc0fc3d3a1e3a6bdCAS |

[42]  C. M. Lousada, A. J. Johansson, T. Brinck, M. Jonsson, Mechanism of H2O2 decomposition on transition metal oxide surfaces. J. Phys. Chem. C 2012, 116, 9533.
Mechanism of H2O2 decomposition on transition metal oxide surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVSjtrw%3D&md5=c8d3ef5acc9111f98b885611ffd70cf6CAS |

[43]  C. M. Lousada, A. J. Johansson, T. Brinck, M. Jonsson, Reactivity of metal oxide clusters with hydrogen peroxide and water – a DFT study evaluating the performance of different exchange–correlation functionals. Phys. Chem. Chem. Phys. 2013, 15, 5539.
Reactivity of metal oxide clusters with hydrogen peroxide and water – a DFT study evaluating the performance of different exchange–correlation functionals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1Gnsrw%3D&md5=500b41f64288953c3919cdc38dfc3adcCAS |

[44]  M. Hicks, J. M. Gebicki, Rate constants for reaction of hydroxyl radicals with Tris, Tricine and HEPES buffers. FEBS Lett. 1986, 199, 92.
Rate constants for reaction of hydroxyl radicals with Tris, Tricine and HEPES buffers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktVaqsrY%3D&md5=a4743929d62215cc940fdffaf7e0c894CAS |

[45]  J. De Laat, H. Gallard, Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ. Sci. Technol. 1999, 33, 2726.
Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFWjs74%3D&md5=135bfbae0803a959f73ec18240b5fd72CAS |

[46]  A. D. Bokare, W. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121.
Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps12ls7c%3D&md5=be6049ac3cddf104b84f52c96e3d8a64CAS |

[47]  A. Hussain, J. Gracia, B. E. Nieuwenhuys, J. Niemantsverdriet, Chemistry of O‐ and H‐containing species on the (001) surface of anatase TiO2: a DFT study. ChemPhysChem 2010, 11, 2375.
Chemistry of O‐ and H‐containing species on the (001) surface of anatase TiO2: a DFT study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlyrs7o%3D&md5=fa090e9ece0f3aefc0b76a9e2bd3cc02CAS |

[48]  W. P. Kwan, B. M. Voelker, Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 2002, 36, 1467.
Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht12rt7o%3D&md5=af1df1db77396e79b94c42c901263a7fCAS |

[49]  B. R. Petigara, N. V. Blough, A. C. Mignerey, Mechanisms of hydrogen peroxide decomposition in soils. Environ. Sci. Technol. 2002, 36, 639.
Mechanisms of hydrogen peroxide decomposition in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtF2qtg%3D%3D&md5=66449fe96be859b5e31b0b8eb08e4a6eCAS |

[50]  W. Stumm, J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters 2012 (John Wiley & Sons: New York, NY).

[51]  J. Nawrocki, M. Rigney, A. McCormick, P. Carr, Chemistry of zirconia and its use in chromatography. J. Chromatogr. A 1993, 657, 229.
Chemistry of zirconia and its use in chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsVCrt7w%3D&md5=cecf6cb8e926fa003b0f64820a743255CAS |

[52]  T. Sriskandakumar, N. Opembe, C.-H. Chen, A. Morey, C. King’ondu, S. L. Suib, Green decomposition of organic dyes using octahedral molecular sieve manganese oxide catalysts. J. Phys. Chem. A 2009, 113, 1523.
Green decomposition of organic dyes using octahedral molecular sieve manganese oxide catalysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOlur0%3D&md5=9609f78d2a578b500467b0886672ccd5CAS |

[53]  R. Rinaldi, F. Y. Fujiwara, W. Hölderich, U. Schuchardt, Tuning the acidic properties of aluminas via sol-gel synthesis: new findings on the active site of alumina-catalyzed epoxidation with hydrogen peroxide. J. Catal. 2006, 244, 92.
Tuning the acidic properties of aluminas via sol-gel synthesis: new findings on the active site of alumina-catalyzed epoxidation with hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVykt7nK&md5=952dafad751946a163f49eb6d922b4bfCAS |

[54]  A. L.-T. Pham, F. M. Doyle, D. L. Sedlak, Inhibitory effect of dissolved silica on H2O2 decomposition by iron(III) and manganese(IV) oxides: implications for H2O2-based in situ chemical oxidation. Environ. Sci. Technol. 2012, 46, 1055.
Inhibitory effect of dissolved silica on H2O2 decomposition by iron(III) and manganese(IV) oxides: implications for H2O2-based in situ chemical oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCmsrrF&md5=0bfbe6bcdad8d1f046f8fb9cee897b3dCAS |