Accessory publication

Table A1. Univariant analysis of variance for total arsenic among locations and tissues for each species

NS, not significant at $P \ge 0.05$; MS, mean squared

				As	
Species	Variable	d.f.	MS	F	P
Ecklonia radiata	Tissue	3	15412.1	32.415	< 0.001
	Location	2	1148.5	2.415	NS
	$Loc \times Tissue$	6	548.1	0.347	NS
Haliotis rubra	Tissue	3	12705.4	11.895	< 0.001
	Location	2	2379.6	2.228	NS
	$Loc \times Tissue$	6	241.8	0.226	NS
Turbo torquatus	Tissue	2	4859.7	26.880	< 0.001
	Location	2	182.7	1.011	NS
	$Loc \times Tissue$	4	266.9	1.477	NS
Heliocidaris erythrogramma	Tissue	2	14.9	77.018	< 0.001
	Location	2	4.3	22.365	< 0.001
	$Loc \times Tissue$	4	0.984	5.075	< 0.01
Centrostephanus rodgersii	Tissue	2	10676.0	4.433	< 0.05
	Location	2	406.1	0.169	NS
	$Loc \times Tissue$	4	1920.2	0.797	NS
Odax cyanomelas ^A	Tissue	9	1012.5	14.568	< 0.001

^AA one-way analysis of variance was conducted on the *O. cyanomelas* as the fish were only caught at one location and therefore comparisons among locations could not be made.

Table A2. Total arsenic concentrations (mean \pm s.d.) of *E. radiata* and animals among locations

			Broulee	Long Beach	Rosedale	All locations
Order – Family	Species	Tissue	As $\mu g g^{-1}$ ($n = 5$)	As μ g g ⁻¹ $(n=5)$	As $\mu g g^{-1}$ ($n = 5$)	As $\mu g g^{-1}$ (n = 15)
Laminariales	E. radiata					
Alariaceae	Stage 1	Blade		74 ± 31		
		Meristem		68 ± 15		
		Stipe		68 ± 10		
		Holdfast		110 ± 42		
	Stage 2	Blade		40 ± 5		
		Meristem		47 ± 4		
		Stipe		45 ± 14		
		Holdfast		153 ± 31		
	Stage 3	Blade	52 ± 8	48 ± 8	62 ± 20	55 ± 14
		Meristem	68 ± 21	48 ± 11	43 ± 25	53 ± 22
		Stipe	48 ± 10	53 ± 12	34 ± 2	46 ± 12
		Holdfast	132 ± 42	110 ± 42	101 ± 16	113 ± 33
Archeogastropoda	H. rubra	Muscle	58 ± 54	45 ± 11	55 ± 10	53 ± 31
Haliotidae		Gonad	72 ± 22	58 ± 27	93 ± 44	74 ± 33
		Digestive	123 ± 43	98 ± 32	121 ± 54	114 ± 42
		Gill	57 ± 21	41 ± 2	55 ± 19	51 ± 17
Vetigastropoda	T. torquatus	Muscle	16 ± 5	18 ± 5	18 ± 3	17 ± 4
Turbinidae		Gonad	53 ± 7	37 ± 10	58 ± 25	49 ± 18
		Organ	42 ± 11	50 ± 14	49 ± 21	47 ± 15
Echinoida	H. erythrogramma	Visceral mass	59 ± 48	46 ± 15	149 ± 63	76 ± 64
Echinometridae		Gonad	72 ± 99	8.6 ± 2.0	17 ± 8	10 ± 7
		Food pellets	6.8 ± 1.5	28 ± 18	13 ± 2	16 ± 13
	C. rodgersii	Visceral mass	32 ± 10	97 ± 64	66 ± 26	74 ± 48
	, and the second	Gonad	5.1 ± 1.5	50 ± 43	42 ± 15	55 ± 59
		Food pellets	7.8 ± 2.9	21 ± 11	36 ± 52	21 ± 31
Perciformes	O. cyanomelas ^A	Muscle	_	_	_	6.4 ± 1.5
Odacidae		Liver	_	_	_	12 ± 2
		Kidney	_	_	_	14 ± 9
		Foregut	_	_	_	25 ± 3
		Hindgut	_	_	_	27 ± 4
		Gill	_	_	_	14 ± 1
		Heart	_	_	_	16 ± 4
		Brain	_	_	_	7.7 ± 2.3
		Eyes	_	_	_	77 ± 25
		Gut contents	_	_	_	37 ± 7

^AOnly 5 replicates of each tissue were analysed for the fish *O. cyanomelas*.

Table A3. Total and methanol/water extracted arsenic (mean \pm s.d.) of species and tissues from pooled samples

Total column recoveries (% ± reproducibility of replicate measurements) were calculated by the total sum of species off all columns divided by the total arsenic injected onto the column

		Total As	Acetone	Methanol/wa ter	Total column recoveries
Species	Tissue	$\mu g \; As \; g^{-1} \; ^A$	% B	%B	%
E. radiata	Blade	44 ± 2	1.2 ± 0.2	88 ± 6	84 ± 6
Stage 1	Meristem	51 ± 1	0.6 ± 0.1	106 ± 7	93 ± 6
	Stipe	52 ± 2	0.4 ± 0.1	88 ± 6	97 ± 7
	Holdfast	88 ± 5	0.24 ± 0.04	89 ± 6	96 ± 7
E. radiata	Blade	29 ± 1	0.6 ± 0.1	73 ± 5	92 ± 6
Stage 2	Meristem	46 ± 3	0.21 ± 0.03	92 ± 6	98 ± 7
	Stipe	28 ± 1	0.20 ± 0.03	90 ± 6	85 ± 6
	Holdfast	149 ± 2	0.4 ± 0.1	107 ± 7	91 ± 6
E. radiata	Blade	46 ± 1	1.0 ± 0.2	83 ± 6	84 ± 6
Stage 3	Meristem	38 ± 1	0.4 ± 0.1	85 ± 6	100 ± 7
	Stipe	31 ± 2	0.12 ± 0.02	98 ± 7	100 ± 7
	Holdfast	91 ± 8	0.24 ± 0.03	106 ± 7	77 ± 5
H. rubra	Muscle	36 ± 2	1.0 ± 0.2	104 ± 7	95 ± 7
	Gonad	54 ± 4	4.6 ± 0.7	86 ± 6	77 ± 5
	Digestive	112 ± 1	2.3 ± 0.4	100 ± 7	98 ± 7
	Gill	45 ± 1	2.8 ± 0.4	79 ± 5	85 ± 6
	Gut contents	84 ± 5	0.4 ± 0.06	75 ± 5	103 ± 7
T. torquatus	Muscle	13 ± 1	2.9 ± 0.4	62 ± 4	90 ± 6
	Gonad	31 ± 2	5.7 ± 0.9	57 ± 4	94 ± 7
	Organ	38 ± 1	1.0 ± 0.2	73 ± 5	96 ± 7
H. erythrogramma	Visceral	41 ± 2	2.4 ± 0.4	105 ± 7	94 ± 7
	Gonad	10 ± 1	8.9 ± 1.3	98 ± 7	83 ± 6
	Food pellets	12 ± 1	1.5 ± 0.2	36 ± 2	87 ± 6
C. rodgersii	Visceral	53 ± 1	1.8 ± 0.3	97 ± 7	109 ± 8
	Gonad	13 ± 2	16 ± 2	94 ± 6	85 ± 6
	Food pellets	10 ± 1	0.8 ± 0.1	25 ± 2	104 ± 7
O. cyanomelas	Muscle	5.8 ± 1	1.0 ± 0.2	74 ± 5	94 ± 7
	Liver	12 ± 1	12 ± 1	53 ± 4	97 ± 7
	Digestive	22 ± 1	5.0 ± 0.8	72 ± 5	89 ± 6
	Gill	11 ± 1	11 ± 2	62 ± 4	89 ± 6
	Gut contents	29 ± 3	0.7 ± 0.1	89 ± 6	87 ± 6

^AMean and s.d. for triplicate measurements of a pooled sample. ^BPercentage recoveries based on the difference of the recovery of arsenic from the extraction compared with the total arsenic determined by inductively coupled plasma mass spectrometer (ICP-MS).

Table A4. Methanol/water extractable cationic and anionic arsenic species from different growth stages of Ecklonia radiate

U, unidentified; Gly-riboside, glcerol-riboside; DMA, dimethylarsinate; PO₄-riboside, phosphate-riboside; AsV, arsenate; SO₃-riboside, sulfonate-riboside; OSO₃-riboside, sulphate-riboside. Arsenic species concentration \pm calculated uncertainty (reproducibility of the measurement was calculated based on repeated measurements (n = 3) each of 0.5, 1, 10 and 100 μ g L⁻¹ standards during each analytical run and compared with the initial calibration

		Cations			Anions				
		U 2	U 3	Gly-riboside	DMA	PO ₄ -riboside	As ^V	SO ₃ riboside	OSO ₃ -riboside
Sample	Tissue	$\mu g \ As \ g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g \; As \; g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g \ As \ g^{-1}$
E. radiata	Blade	0.23 ± 0.01 (0.7)	n.d. ^A	1.1 ± 0.1 (3.3)	0.31 ± 0.03 (1.0)	6.5 ± 0.7 (20)	n.d.	24 ± 3 (74)	n.d.
Stage 1	Meristem	0.07 ± 0.01 (0.1)	n.d.	0.84 ± 0.04 (1.7)	0.21 ± 0.03 (0.4)	7.2 ± 0.8 (14)	n.d.	42 ± 5 (83)	n.d.
	Stipe	0.19 ± 0.01 (0.4)	n.d.	2.4 ± 0.1 (5.3)	0.26 ± 0.03 (0.6)	12 ± 1 (28)	5.6 ± 0.6 (13)	23 ± 3 (53)	n.d.
	Holdfast	0.09 ± 0.01 (0.1)	n.d.	1.7 ± 0.1 (2.3)	0.28 ± 0.03 (0.4)	15 ± 2 (19)	n.d.	58 ± 6 (77)	0.27 ± 0.03 (0.4)
E. radiata	Blade	0.04 ± 0.01 (0.2)	n.d.	1.1 ± 0.1 (5.3)	0.28 ± 0.03 (1.4)	2.9 ± 0.3 (15)	n.d.	15 ± 2 (76)	n.d.
Stage 2	Meristem	0.03 ± 0.01 (0.1)	n.d.	0.90 ± 0.04 (2.2)	0.15 ± 0.02 (0.4)	4.5 ± 0.5 (11)	n.d.	35 ± 4 (86)	n.d.
	Stipe	0.03 ± 0.01 (0.1)	n.d.	1.4 ± 0.1 (6.5)	0.14 ± 0.02 (0.7)	2.0 ± 0.2 (9.6)	n.d.	17 ± 2 (83)	n.d.
	Holdfast	n.d.	n.d.	1.4 ± 0.1 (0.9)	0.45 ± 0.05 (0.3)	11 ± 1 (7.8)	n.d.	132 ± 15 (91)	0.60 ± 0.06 (0.4)
E. radiata	Blade	n.d.	0.19 ± 0.01 (0.6)	2.1 ± 0.1 (6.5)	0.51 ± 0.06 (1.6)	5.9 ± 0.6 (18)	n.d.	23 ± 3 (73)	n.d.
Stage 3	Meristem	0.02 ± 0.01 (0.1)	n.d.	1.3 ± 0.1 (3.9)	0.13 ± 0.01 (0.4)	7.1 ± 0.8 (22)	n.d.	23 ± 3 (73)	n.d.
	Stipe	0.06 ± 0.01 (0.2)	n.d.	2.6 ± 0.1 (8.5)	0.19 ± 0.02 (0.6)	4.4 ± 0.5 (14)	n.d.	23 ± 3 (76)	n.d.
	Holdfast	0.07 ± 0.01 (0.1)	n.d.	1.9 ± 0.1 (2.5)	0.38 ± 0.04 (0.5)	8.3 ± 0.9 (11)	n.d.	63 ± 7 (86)	n.d.
Peak time (min) mean ± s.d.		5.76 ± 0.17	6.07 ± 0.39	6.75 ± 0.09	2.82 ± 0.02	5.00 ± 0.08	8.38 ± 0.32	8.87 ± 0.40	19.4 ± 0.9

An.d. <0.01 μg g⁻¹ As based on 20-μl injection. Arsenic species below detection limits were AB, Gly-riboside, TriMeOH, TMAP, DMAE, AC, TETRA, As^{III}, MA.

Table A5. PCA results of arsenic species proportions in intertidal gastropod species

Factor loadings in bold have more influence on the samples location in three-dimensional space. PC1–3, principle component axes 1 to 3; AB, arsenobetaine; Gly-riboside, glycerol-riboside; TriMeOH, trimethylarsonioriboside; TMAP, trimethylarsoniopropionate; DMAE, 2-dimethylarsinoyl ethanol; AC, arsenocholine; TETRA, tetramethylarsonium ion; DMA, dimethylarsinate; DMAA/MA, 2-dimethylarsinoyl acetic acid/methylarsonate; PO₄-riboside, phosphate-riboside; AsV, arsenate; SO₃-riboside, sulfonate-riboside; OSO₃-riboside, sulphate-riboside; Thio denotes oxygen replaced by sulfur on the arsenic atom

Axis	Eigenvalues	%Variation	Cumulative % variation
PC1	10.94	34.2	34.2
PC2	3.79	11.8	46.0
PC3	3.39	10.6	56.6
Variable	PC1	PC2	PC3
AB	0.178	0.156	-0.13
Unknown 1	0.254	-0.215	0.054
Unknown 2	0.231	0.029	-0.039
Unknown 3	0.286	0.06	-0.024
Gly-riboside	0.111	-0.448	0.065
Unknown 4	0.291	0.061	-0.028
TriMeOH	0.299	0.024	-0.025
TMAP	0.039	0.099	-0.453
DMAE	-0.033	0.042	-0.405
Unknown 5	0.287	0.076	-0.013
AC	0.118	0.059	0.155
TETRA	-0.005	0.092	-0.062
Unknown 6/7	0.291	0.061	-0.028
DMA	0.12	-0.082	0.013
Unknown 8	0.291	0.061	-0.028
Unknown 9	0.246	0.067	-0.05
DMAA/MA	-0.01	-0.093	0.12
PO ₄ -riboside	-0.022	-0.021	-0.425
As^{V}	0.028	-0.468	0.073
SO ₃ -riboside	-0.036	-0.075	0.062
Unknown 10	-0.021	0.019	-0.442
OSO ₃ -riboside	-0.019	0.029	0.222
Unknown 11	0.01	-0.463	0.009
Unknown 12	0.292	-0.046	0.004
Thio-SO ₃ -riboside	0.241	-0.242	0.081
Thio-PO ₄ -riboside	0.022	0.199	0.267
Thio-OSO ₃ -riboside	0.073	0.187	0.320
Thio-Gly-riboside	0.026	0.208	0.308
Unknown 13	-0.022	-0.21	-0.034

Table A6. Methanol/water extractable cationic arsenic species from Ecklonia radiata ecosystem organisms

AB, arsenobetainie; U, unidentified; Gly-riboside, glycerol-riboside; TriMeOH, trimethylarsonioriboside; TMAP, trimethylarsoniopropionate; DMAE, 2-dimethylarsinoyl ethanol; AC, arsenocholine; TETRA, tetramethylarsonium ion. Arsenic species concentration ± calculated uncertainty (reproducibility of the measurement was calculated based on repeated-measurements (*n* = 3) each of 0.5, 1, 10 and 100 μg L⁻¹ standards (AB, TMAP, AC, TETRA) during each analytical run and compared with the initial calibration

		AB	U 1	U 2	U 3	Gly-riboside	U4	TriMeOH	TMAP	DMAE	U 5	AC	TETRA
Sample	Tissue	μg As g ⁻¹	μg As g ⁻¹	$\mu g As g^{-1}$	$\mu g As g^{-1}$	μg As g ⁻¹	$\mu g As g^{-1}$	μg As g ⁻¹	μg As g ⁻¹	$\mu g As g^{-1}$	μg As g ⁻¹	$\mu g As g^{-1}$	μg As g ⁻¹
Haliotis rubra	Muscle	33 ± 2 (92)	n.d. ^A	n.d.	n.d.	0.15 ± 0.01 (0.4)	n.d.	0.26 ± 0.1 (0.7)	0.60 ± 0.03 (1.6)	n.d.	n.d.	0.11 ± 0.01 (0.3)	0.25 ± 0.01 (0.7)
	Gonad	14 ± 1 (39)	0.21 ± 0.01 (0.6)	n.d.	n.d.	1.9 ± 0.1 (5.2)	n.d.	4.4 ± 0.2 (12)	0.07 ± 0.01 (0.2)	n.d.	n.d.	0.57 ± 0.03 (1.6)	0.34 ± 0.02 (0.9)
	Digestive	28 ± 2 (25)	0.33 ± 0.02 (0.3)	0.48 ± 0.02 (0.4)	1.2 ± 0.1 (1.1)	4.4 ± 0.2 (3.9)	1.2 ± 0.1 (1.1)	24 ± 1 (22)	0.37 ± 0.01 (0.3)	n.d.	n.d.	1.3 ± 0.1 (1.2)	1.8 ± 0.1 (1.6)
	Gill	18 ± 1 (59)	0.05 ± 0.01 (0.2)	n.d.	n.d.	1.8 ± 0.1 (6.0)	n.d.	1.9 ± 0.1 (6.4)	0.52 ± 0.03 (1.7)	n.d.	n.d.	0.29 ± 0.01 (1.0)	2.4 ± 0.1 (8)
	Gut contents	0.15 ± 0.01 (0.2)	0.26 ± 0.01 (0.4)	n.d.	n.d.	12 ± 1 (19)	n.d.	1.9 ± 0.1 (2.9)	n.d.	n.d.	n.d.	n.d.	0.57 ± 0.03 (0.9)
Turbo torquatus	Muscle	5.1 ± 0.3 (67)	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.03 ± 0.01 (0.4)	n.d.	n.d.	0.04 ± 0.01 (0.6)	0.31 ± 0.02 (4.1)
	Gonad	7.7 ± 0.4 (46)	0.06 ± 0.01 (0.4)	n.d.	n.d.	1.1 ± 0.1 (6.5)	n.d.	0.013 ± 0.001 (0.1)	n.d.	n.d.	n.d.	0.22 ± 0.01 (1.3)	0.73 ± 0.04 (4.4)
	Organ	13 ± 1 (50)	0.08 ± 0.01 (0.3)	n.d.	n.d.	1.4 ± 0.1 (5.3)	n.d.	0.23 ± 0.01 (0.9)	0.07 ± 0.01 (0.3)	n.d.	n.d.	0.18 ± 0.01 (0.7)	4.6 ± 0.2 (17)
Heliocidaris erythrogramma	Visceral	12 ± 1 (31)	n.d.	n.d.	n.d.	1.7 ± 0.1 (4.2)	n.d.	n.d.	0.86 ± 0.04 (2.1)	n.d.	n.d.	0.05 ± 0.01 (0.1)	0.04 ± 0.01 (0.1)
	Gonad	6.9 ± 0.4 (83)	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.22 ± 0.01 (2.5)	n.d.	0.07 ± 0.01 (0.8)	n.d.
	Food pellets	1.3 ± 0.1 (36)	n.d.	n.d.	n.d.	0.17 ± 0.01 (4.5)	n.d.	n.d.	n.d.	0.55 ± 0.03 (14)	n.d.	n.d.	n.d.

^An.d. $<0.01 \mu g g^{-1}$ As based on 20- μ l injection.

Table	46	(Continued)
I aine	AU.	(Commuea)

		AB	U 1	U 2	U 3	Gly-riboside	U4	TriMeOH	TMAP	DMAE	U 5	AC	TETRA
Sample	Tissue	μg As g ⁻¹	$\mu g As g^{-1}$	$\mu g As g^{-1}$	μg As g ⁻¹	μg As g ⁻¹	μg As g ⁻¹	$\mu g As g^{-1}$	μg As g ⁻¹	$\mu g As g^{-1}$	$\mu g \text{ As } g^{-1}$	$\mu g As g^{-1}$	μg As g ⁻¹
Centrostephanus rodgersii	Visceral	7.9 ± 0.4 (14)	n.d.	n.d.	n.d.	0.93 ± 0.04 (1.7)	n.d.	n.d.	n.d.	1.1 ± 0.1 (2.0)	n.d.	n.d.	n.d.
	Gonad	3.9 ± 0.2 (38)	n.d.	0.11 ± 0.01 (1)	n.d.	0.51 ± 0.01 (4.9)	n.d.	n.d.	0.19 ± 0.01 (1.8)	n.d.	n.d.	0.03 ± 0.01 (0.3)	0.06 ± 0.01 (0.5)
	Food pellets	0.58 ± 0.03 (23)	n.d.	n.d.	n.d.	0.08 ± 0.01 (3.1)	n.d.	n.d.	n.d.	0.31 ± 0.01 (12)	n.d.	n.d.	n.d.
Odax cyanomelas	Muscle	0.15 ± 0.01 (4)	n.d.	n.d.	n.d.	0.14 ± 0.01 (3.5)	n.d.	n.d.	0.07 ± 0.01 (1.8)	n.d.	n.d.	n.d.	0.08 ± 0.01 (1.9)
	Liver	0.50 ± 0.02 (8)	n.d.	n.d.	n.d.	0.26 ± 0.01 (4.1)	n.d.	n.d.	n.d.	n.d.	0.08 ± 0.01 (1.2)	0.04 ± 0.01 (0.6)	n.d.
	Digestive	0.21 ± 0.01 (1.5)	n.d.	n.d.	n.d.	1.6 ± 0.1 (11)	n.d.	n.d.	n.d.	n.d.	0.50 ± 0.02 (3.6)	0.04 ± 0.01 (0.3)	0.05 ± 0.01 (0.3)
	Gill	0.96 ± 0.05 (15)	n.d.	n.d.	n.d.	0.66 ± 0.03 (10)	n.d.	n.d.	n.d.	n.d.	1.5 ± 0.1 (24)	n.d.	n.d.
	Gut contents	n.d.	n.d.	n.d.	n.d.	2.6 ± 0.1 (12)	n.d.	n.d.	n.d.	n.d.	0.81 ± 0.04 (3.6)	n.d.	n.d.
Peak time (min) mean \pm s.d.	_	4.09 ± 0.06	4.98 ± 0.06	5.76 ± 0.17	6.07 ± 0.39	6.75 ± 0.09	7.33 ± 0.04	7.93 ± 0.06	8.82 ± 0.14	8.95 ± 0.26	10.1 ± 0.1	11.0 ± 0.2	13.1 ± 0.2

Table A7. Methanol/water extractable thioarsenic species from *Ecklonia radiata* ecosystem organisms

U, unidentified; Thio-SO₃ riboside, thio-sulfonate-riboside; Thio-PO₄-riboside, thio-phosphate-riboside; Thio-OSO₃-riboside, thio-sulfate-riboside; Thio-Gly-riboside, thio-glycerol-riboside. Arsenic species concentration \pm calculated uncertainty (reproducibility of the measurement was calculated based on repeated measurements (n = 2) of 0.5, 1, 10 and 100 μ g L⁻¹ standards (arsenobetainie, AB) during each analytical run and compared with the initial calibration)

		U 11	U 12	Thio-SO ₃ -riboside	Thio-PO ₄ -riboside	Thio-OSO ₃ -riboside	Thio-Gly- riboside	U13
Sample		$\mu g \ As \ g^{-1}$	$\mu g As g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g \ As \ g^{-1}$
Haliotis rubra	Muscle	n.d. ^A	n.d.	n.d.	0.17 ± 0.01 (0.5)	n.d.	0.11 ± 0.01 (0.3)	0.06 ± 0.01 (0.2)
	Gonad	n.d.	0.10 ± 0.01 (0.3)	0.02 ± 0.01 (0.8)	n.d.	n.d.	n.d.	n.d.
	Digestive	n.d.	0.22 ± 0.02 (0.2)	0.44 ± 0.01 (0.4)	0.17 ± 0.01 (0.2)	0.05 ± 0.01 (0.04)	0.04 ± 0.01 (0.04)	n.d.
	Gill	n.d.	n.d.	0.08 ± 0.01 (0.3)	n.d.	n.d.	0.04 ± 0.01 (0.1)	n.d.
	Gut contents	0.15 ± 0.01 (0.2)	0.05 ± 0.01 (0.1)	0.40 ± 0.03 (0.6)	n.d.	n.d.	n.d.	0.07 ± 0.01 (0.1)
Turbo torquatus	Muscle	n.d.	n.d.	n.d.	1.0 ± 0.1 (14)	0.12 ± 0.01 (1.7)	0.25 ± 0.02 (3.4)	0.02 ± 0.01 (0.2)
	Gonad	n.d.	n.d.	0.08 ± 0.01 (0.5)	0.06 ± 0.01 (0.4)	n.d.	0.04 ± 0.01 (0.2)	n.d.
	Organ	n.d.	0.02 ± 0.01 (0.1)	0.13 ± 0.01 (0.5)	0.13 ± 0.01 (0.5)	0.05 ± 0.01 (0.2)	0.15 ± 0.01 (0.6)	n.d.
Heliocidaris erythrogramma	Visceral	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Gonad	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Food pellets	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Centrostephanus rodgersii	Visceral	0.04 ± 0.01 (0.1)	n.d.	n.d.	0.11 ± 0.01 (0.2)	n.d.	0.02 ± 0.01 (0.04)	0.04 ± 0.01 (0.1)
	Gonad	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Food pellets	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Odax cyanomelas	Muscle	0.02 ± 0.01 (0.5)	n.d.	n.d.	0.12 ± 0.01 (3.0)	n.d.	n.d.	n.d.

			Table A7.	(Continued)				
		U 11	U 12	Thio-SO ₃ -riboside	Thio-PO ₄ - riboside	Thio-OSO ₃ - riboside	Thio-Gly- riboside	U13
Sample		$\mu g \ As \ g^{-1}$	$\mu g \text{ As } g^{-1}$	$\mu g As g^{-1}$	$\mu g As g^{-1}$	$\mu g As g^{-1}$	$\mu g As g^{-1}$	$\mu g As g^{-1}$
	Liver	0.02 ± 0.01 (0.3)	n.d.	n.d.	0.05 ± 0.01 (0.8)	n.d.	0.04 ± 0.01 (0.7)	n.d.
	Digestive	0.02 ± 0.01 (0.2)	n.d.	0.06 ± 0.01 (0.4)	0.07 ± 0.01 (0.5)	n.d.	0.09 ± 0.01 (0.6)	n.d.
	Gill	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	Gut contents	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Peak time (min)		6.35 ± 0.19	6.85 ± 0.08	7.55 ± 0.12	8.26 ± 0.36	10.0 ± 0.7	13.5 ± 0.4	16.1 ± 1.0

 $^{^{}A}n.d.$ ${<}0.01~\mu g~g^{{-}1}$ As based on 20- μl injection.

Table A8. Methanol/water extractable anionic arsenic species from *Ecklonia radiata* ecosystem organisms

U, unidentified; DMA, dimethylarsinate; DMAA/MA, 2-dimethylarsinoyl acetic acid/ methylarsonate; PO₄-riboside, phosphate-riboside; As^V, arsenate; SO₃-riboside, sulfate-riboside, sulfate-riboside. Arsenic species concentration \pm calculated uncertainty (reproducibility of the measurement was calculated based on repeated measurements each (n = 2) of 0.5, 1, 10 and 100 μ g L⁻¹ standards (As^{III}, DMA, MA, As^V) during each analytical run and compared with the initial calibration)

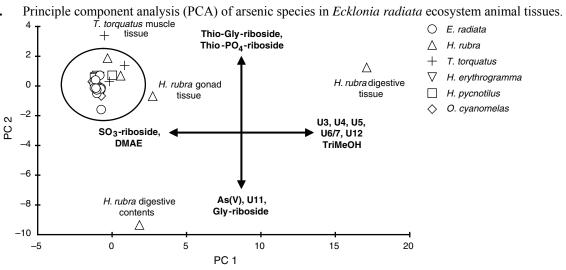

		U 6/7	DMA	U 8	U 9	DMAA/MA	PO ₄ -riboside	As ^V	SO ₃ -riboside	U 10	OSO ₃ -riboside
Sample		μg As g ⁻¹	$\mu g As g^{-1}$	μg As g ⁻¹	μg As g ⁻¹	$\mu g As g^{-1}$	$\mu g As g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g \ As \ g^{-1}$	$\mu g As g^{-1}$	$\mu g As g^{-1}$
Haliotis rubra	Muscle	n.d. ^A	0.38 ± 0.04 (1.1)	n.d.	n.d.	n.d.	$\frac{0.65 \pm 0.07}{(1.8)}$	- n.d.	n.d.	n.d.	n.d.
	Gonad	n.d.	1.3 ± 0.2 (3.6)	n.d.	0.11 ± 0.01 (0.3)	n.d.	6.0 ± 0.7 (17)	0.04 ± 0.01 (0.1)	6.4 ± 0.7 (18)	n.d.	n.d.
	Digestive	26 ± 3 (24)	3.2 ± 0.4 (2.9)	2.4 ± 0.3 (2.2)	0.80 ± 0.09 (0.7)	n.d.	4.3 ± 0.5 (3.9)	n.d.	8.6 ± 0.9 (7.8)	n.d.	0.01 ± 0.01 (0.01)
	Gill	n.d.	0.29 ± 0.03 (1.0)	n.d.	n.d.	n.d.	4.7 ± 0.5 (15)	0.08 ± 0.01 (0.2)	$n.d.19 \pm 2$	n.d.	n.d.
	Gut contents	n.d.	$1.\dot{5} \pm 0.1$ (2.4)	n.d.	n.d.	0.17 ± 0.02 (0.3)	2.0 ± 0.2 (3.1)	27 ± 3 (41)	(29) 0.05 ± 0.01	n.d.	n.d.
Turbo torquatus	Muscle	n.d.	0.09 ± 0.01 (1.2)	n.d.	n.d.	n.d.	0.30 ± 0.03 (4.0)	n.d.	(0.7) 1.2 ± 0.1	n.d.	0.09 ± 0.01 (1.3)
	Gonad	n.d.	1.8 ± 0.2 (11)	n.d.	n.d.	n.d.	3.3 ± 0.4 (20)	n.d.	(7.1) 0.97 ± 0.11	n.d.	0.40 ± 0.04 (2.4)
	Organ	n.d.	1.2 ± 0.1 (4.5)	n.d.	n.d.	n.d.	3.4 ± 0.4 (13)	n.d.	(3.6) 0.15 ± 0.02	n.d.	0.79 ± 0.09 (3.0)
Heliocidaris erythrogramma	Visceral	n.d.	0.77 ± 0.08 (1.9)	n.d.	n.d.	n.d.	23 ± 3 (58)	0.23 ± 0.02 (0.6)	(0.4) n.d.	0.51 ± 0.06 (1.3)	n.d.
	Gonad	n.d.	n.d.	n.d.	n.d.	n.d.	1.1 ± 0.1 (13)	n.d.	$0.36 \pm 0.04(9.8)$	n.d.	n.d.
	Food pellets	n.d.	0.38 ± 0.04 (10)	n.d.	n.d.	n.d.	0.89 ± 0.10 (24)	0.04 ± 0.01 (0.9)	0.48 ± 0.05 (0.9)	n.d.	n.d.
Centrostephanus rodgersii	Visceral	n.d.	2.4 ± 0.3 (4.3)	n.d.	n.d.	n.d.	42 ± 5 (75)	0.28 ± 0.03 (0.5)	0.04 ± 0.01 (0.4)	0.39 ± 0.04 (0.7)	n.d.
,	Gonad	n.d.	0.72 ± 0.08 (6.9)	n.d.	0.57 ± 0.06 (5.5)	n.d.	4.2 ± 0.5 (41)	n.d.	0.18 ± 0.02 (7.1)	n.d.	n.d.

Table A	8. ((Continued)
I abic n	10. (Jonninaea j

					1001011201 (communica)					
		U 6/7	DMA	U 8	U 9	DMAA/MA	PO ₄ -riboside	As ^V	SO ₃ -riboside	U 10	OSO ₃ - riboside
Sample		$\mu g As g^{-1}$	$\mu g \text{ As } g^{-1}$	$\mu g As g^{-1}$	$\mu g \text{ As } g^{-1}$	$\mu g \text{ As } g^{-1}$	$\mu g As g^{-1}$	μg As g ⁻¹	μg As g ⁻¹	μg As g ⁻¹	μg As g ⁻¹
Odax cyanomelas	Food pellets	n.d.	0.49 ± 0.05 (19)	n.d.	n.d.	n.d.	0.80 ± 0.09 (31)	0.07 ± 0.01 (2.6)	0.56 ± 0.06 (14)	0.03 ± 0.01 (1.2)	n.d.
	Muscle	n.d.	0.29 ± 0.03 (7.2)	n.d.	n.d.	n.d.	2.6 ± 0.3 (64)	n.d.	0.98 ± 0.11 (16)	n.d.	n.d.
	Liver	n.d.	1.7 ± 0.2 (27)	n.d.	n.d.	0.10 ± 0.01 (1.6)	2.3 ± 0.2 (36)	n.d.	4.2 ± 0.5 (30)	n.d.	0.26 ± 0.3 (4.1)
	Digestive	n.d.	3.5 ± 0.4 (25)	n.d.	n.d.	1.3 ± 0.1 (9.1)	2.1 ± 0.2 (15)	n.d.	0.82 ± 0.09 (13)	n.d.	0.25 ± 0.3 (1.8)
	Gill	n.d.	0.45 ± 0.05 (7.1)	n.d.	n.d.	n.d.	1.6 ± 0.2 (25)	0.25 ± 0.03 (4.0)	9.8 ± 1.1 (43)	n.d.	0.08 ± 0.01 (1.2)
	Gut contents	n.d.	4.9 ± 0.5 (22)	n.d.	n.d.	n.d.	3.3 ± 0.4 (15)	n.d.	6.4 ± 0.7 (18)	n.d.	1.2 ± 0.1 (5.2)
Peak time (min) mean \pm s.d.		2.23	2.82 ± 0.02	3.12	3.61 ± 0.18	4.63 ± 0.13	5.00 ± 0.08	8.38 ± 0.32	8.87 ± 0.40	15.8 ± 0.1	19.4 ± 0.9

^An.d. $< 0.01 \mu g g^{-1}$ As bases on 40- μ l injection.

Fig. A1.

