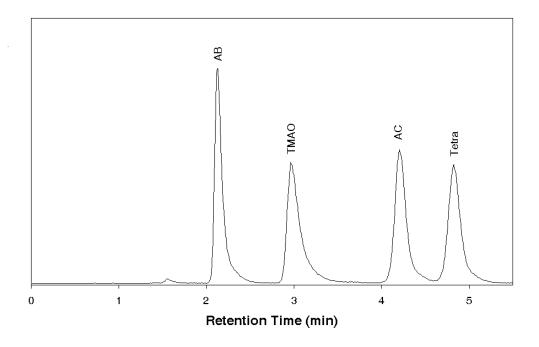
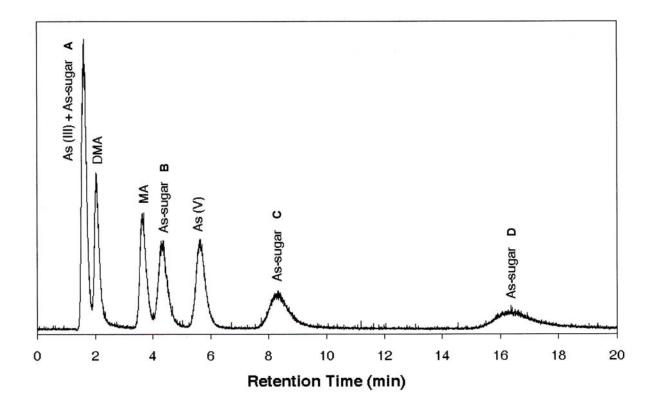
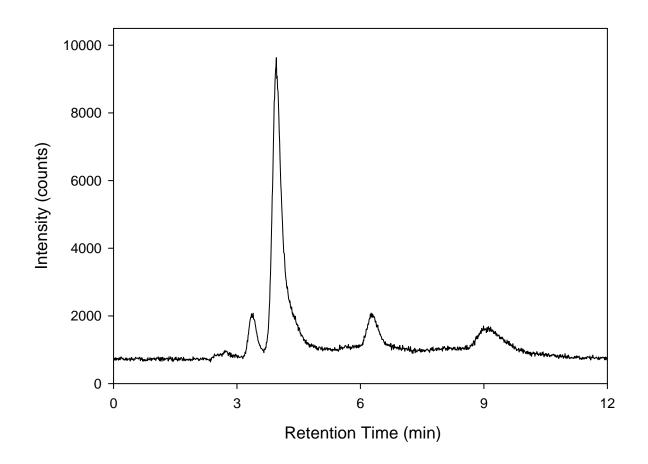
Accessory publication


Arsenic compounds in tropical marine ecosystems: similarities between mangrove forest and coral reef

Somkiat Khokiattiwong,^A Narumol Kornkanitnan,^A Walter Goessler,^B Sabine Kokarnig^B and Kevin A. Francesconi^{B,C}


^APhuket Marine Biological Center, PO Box 60, Phuket 83000, Thailand.

^BInstitute of Chemistry-Analytical Chemistry, Karl-Franzens University Graz, 8010 Graz, Austria.


^CCorresponding author. Email: kevin.francesconi@uni-graz.at

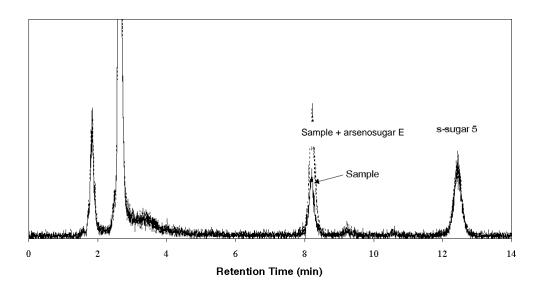
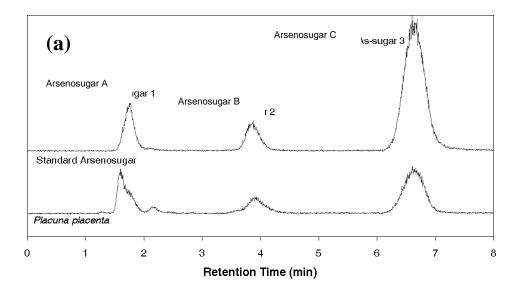

Fig. A1. A mixture of four standard cationic arsenic species (each at 100 μ g As L⁻¹). HPLC condition: Supelcosil LC-SCX cation-exchange column (250 × 4.6 mm internal diameter, 5 μ m) at 40°C, mobile phase 20 mM pyridine (pH 2.6) at 1.5 ml min⁻¹. AB, arsenobetaine; TMAO, trimethylarsine oxide; AC, arsenocholine; Tetra, tetramethylarsonium ion.

Fig. A2. A mixture of eight standard arsenic species (each at 50 μ g As L⁻¹). HPLC condition: Hamilton PRP-X100 anion-exchange column (250 × 4.1 mm, 10 μ m) at 40°C, mobile phase 20 mM NH₄H₂PO₄ (pH 5.6) at 1.5 ml min⁻¹.



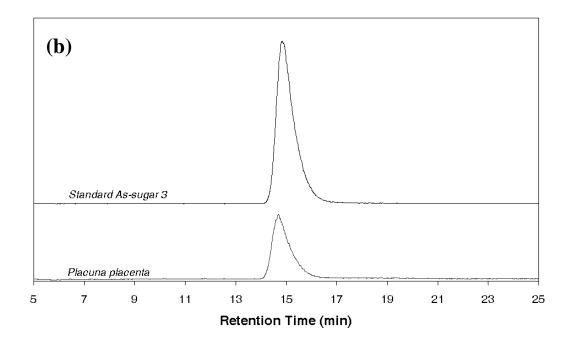

Fig. A3. Extract of leaves of mangrove (*Avicennia officinalis*) from Ao Numbo. HPLC conditions: Agilent anion-exchange column (G3154-6501, 4.6×150 mm) at 35°C with mobile phase (1.3 ml min⁻¹) of 10 mM NH₄HCO₃ at pH 10.7. Peaks identified as DMA (3.3 min), As^{III} (4.6 min), MA (6.3 min), and As^V (9.1 min) by retention time matching with standards. Samples were run under these conditions mainly to determine As^{III} which cannot be reliably measured by PRP-X100 at pH 5.6 (Fig. A2)

Fig. A4. Cation-exchange chromatogram (HPLC-ICPMS) of extract from the gastropod *Telescopium telescopium* (solid line) and *Telescopium telescopium* extract co-injected with standard arsenosugar E (dotted line). Chromatographic conditions were: Supelcosil LC-SCX cation-exchange column (250×4.6 mm internal diameter, 5 µm) at 40°C, mobile phase 20 mM pyridine (pH 5) at 1.5 ml min⁻¹.

Sample + arsenosugar E

Fig. A5. Anion-exchange chromatograms (HPLC/ICPMS) for three standard arsenosugars (top) and the extract from *Placuna placenta* (bottom) (a). Chromatographic conditions: Hamilton PRP-X100 anion-exchange column $(250 \times 4.1 \text{ mm}, 10 \mu\text{m})$ at 40°C, mobile phase 20 mM NH₄H₂PO₄ (pH 5.6) at 1.5 ml min⁻¹. Anion-exchange chromatogram (HPLC/electrospray MS) of the extract from the bivalve *Placuna placenta* (b). Chromatography was performed using a PRP-X100 anion-exchange column $(250 \times 4.1 \text{ mm})$ equilibrated with 10% methanol in 20 mM NH₄HCO₃, pH 10.3 (flow rate 0.4 ml min⁻¹); and the compound was detected at *m/z* 393 (MH⁺) with a Hewlett Packard G1946A single quadrupole mass spectrometer using electrospray ionisation in positive ion mode.