Accessory publication

Salinity-induced acidification in a wetland sediment through the displacement of clay-bound iron(II)

Annaleise Klein,^A Darren Baldwin,^B Balwant Singh,^C and Ewen Silvester^{A,D}

^ADepartment of Environmental Management and Ecology (DEME), La Trobe University, Albury-Wodonga Campus, VIC 3690, Australia.

^BMurray–Darling Freshwater Research Centre (MDFRC), CSIRO Land and Water, La Trobe University, Albury-Wodonga Campus, VIC 3690, Australia.

^CFaculty of Agriculture, Food and Natural Resources, The University of Sydney, NSW 2006, Australia.

^DCorresponding author: e.silvester@latrobe.edu.au

Fig. A1. (a) Experimental charge equivalent fractions of Na⁺ and H⁺ exchanged onto purified Norman's Lagoon clay. Solid lines are modelled using the exchange constants in Table 1 (main paper).
(b) Experimental charge balance, plotted as percentage deviation from average exchange site concentration. (c) Experimental (O) and modelled (solid line) pH of clay mixture; all figures plotted as a function of the charge equivalent fraction Na⁺ in solution.

Fig. A2. (a) Experimental charge equivalent fractions of K⁺, Na⁺ and H⁺ exchanged onto purified Norman's Lagoon clay. Solid lines are modelled using the exchange constants in Table 1 (main paper).
(b) Experimental charge balance, plotted as percentage deviation from average exchange site concentration. (c) Experimental (O) and modelled (solid line) pH of clay mixture; all figures plotted as a function of the charge equivalent fraction K⁺ in solution.

Fig. A3. (a) Experimental charge equivalent fractions of Mg²⁺, Na⁺ and H⁺ exchanged onto purified Norman's Lagoon clay. Solid lines are modelled using the exchange constants in Table 1 (main paper).
(b) Experimental charge balance, plotted as percentage deviation from average exchange site concentration. (c) Experimental (O) and modelled (solid line) pH of clay mixture; all figures plotted as a function of the charge equivalent fraction Mg²⁺ in solution.

Fig. A4. (a) Experimental charge equivalent fractions of Ca²⁺, Na⁺ and H⁺ exchanged onto purified Norman's Lagoon clay. Solid lines are modelled using the exchange constants in Table 1 (main paper).
(b) Experimental charge balance, plotted as percentage deviation from average exchange site concentration. (c) Experimental (O) and modelled (solid line) pH of clay mixture; all figures plotted as a function of the charge equivalent fraction Ca²⁺ in solution.

Fig. A5. (a) Experimental charge equivalent fractions of Fe²⁺, Na⁺ and H⁺ exchanged onto purified Norman's Lagoon clay. Solid lines are modelled using the exchange constants in Table 1 (main paper).
(b) Experimental charge balance, plotted as percentage deviation from average exchange site concentration. (c) Experimental (O) and modelled (solid line) pH of clay mixture; all figures plotted as a function of the charge equivalent fraction Fe²⁺ in solution.

Fig. A6. Buffering properties of Norman's Lagoon clay sediment (not purified) after exchange with chloride salts of: Na^+ , K^+ , Ca^{2+} or Mg^{2+} and then washed with purified water (MilliQ), or washed with MilliQ water without prior exchange. Titration conditions as described in main paper.