Accessory publication

Environmental levels and distribution of structural isomers of perfluoroalkyl acids after aqueous fire-fighting foam (AFFF) contamination

A. Kärrman,^{A,C} K. Elgh-Dalgren,^A C. Lafossas^A and T. Møskeland^B

^AMan-Technology-Environment Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.

^BDet Norske Veritas (DNV), Veritasveien 1, 1322 Høvik, Norway.

^CCorresponding author. Email: anna.karrman@oru.se

Abbreviation	Formula	Name
L-PFOS	$CF_3CF_2CF_2CF_2CF_2CF_2CF_2SO_3^-$	<i>n</i> -perfluoro-octanesulfonate
1-PFOS	$CF_3CF_2CF_2CF_2CF_2CF_2CF(CF_3)SO_3^-$	perfluoro-1-methyl-heptanesulfonate
2-PFOS	$CF_3CF_2CF_2CF_2CF_2CF(CF_3)CF_2SO_3^-$	perfluoro-2-methyl-heptanesulfonate
3-PFOS	$CF_3CF_2CF_2CF_2CF(CF_3)CF_2CF_2SO_3^-$	perfluoro-3-methyl-heptanesulfonate
4-PFOS	$CF_3CF_2CF_2CF(CF_3)CF_2CF_2CF_2SO_3^-$	perfluoro-4-methyl-heptanesulfonate
5-PFOS	$CF_3CF_2CF(CF_3)CF_2CF_2CF_2CF_2SO_3^-$	perfluoro-5-methyl-heptanesulfonate
6-PFOS	$CF_3CF(CF_3)CF_2CF_2CF_2CF_2CF_2SO_3^-$	perfluoro-6-methyl-heptanesulfonate
4,4-PFOS	$CF_3CF(CF_3)_2CF_2CF_2CF_2CF_2SO_3^-$	perfluoro-4,4-dimethyl-hexanesulfonate
3,5-PFOS	$CF_3CF(CF_3)CF_2CF(CF_3)CF_2CF_2SO_3^-$	perfluoro-3,5-dimethyl-hexanesulfonate
4,5-PFOS	$CF_3CF(CF_3)CF(CF_3)CF_2CF_2CF_2SO_3^-$	perfluoro-4,5-dimethyl-hexanesulfonate
5,5-PFOS	$CF_3C(CF_3)_2CF_2CF_2CF_2CF_2SO_3^-$	perfluoro-5,5-dimethyl-hexanesulfonate
L-PFOA	$CF_3CF_2CF_2CF_2CF_2CF_2CF_2COOH$	n-perfluoro-octanoic acid
2-PFOA	CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF(CF ₃)COOH	perfluoro-2-methyl-heptanoic acid
3-PFOA	$CF_3CF_2CF_2CF_2CF(CF_3)CF_2COOH$	perfluoro-3-methyl-heptanoic acid
4-PFOA	CF ₃ CF ₂ CF ₂ CF(CF ₃)CF ₂ CF ₂ COOH	perfluoro-4-methyl-heptanoic acid
5-PFOA	CF ₃ CF ₂ CF(CF ₃)CF ₂ CF ₂ CCOOH	perfluoro-5-methyl-heptanoic acid
6-PFOA	$CF_3CF(CF_3)CF_2CF_2CF_2CF_2COOH$	perfluoro-6-methyl-heptanoic acid
4,4-PFOA	$CF_3 CF_2 CF(CF_3)_2 CF_2 CF_2 COOH$	perfluoro-4,4-dimethyl-hexanoic acid
3,5-PFOA	$CF_3CF(CF_3)CF_2CF(CF_3)CF_2COOH$	perfluoro-3,5-dimethyl-hexanoic acid
4,5-PFOA	$CF_3CF(CF_3)CF(CF_3)CF_2CF_2COOH$	perfluoro-4,5-dimethyl-hexanoic acid
5,5-PFOA	CF ₃ C(CF ₃) ₂ CF ₂ CF ₂ CF ₂ COOH	perfluoro-5,5-dimethyl-hexanoic acid

Table A1. Abbreviation, chemical formula and structure of PFOS and PFOA isomers

Table A2.Recoveries (%) and standard deviations of spiked native compounds to different
matrices (n = 3)

Numbers marked in italics are compounds that were not quantified in respective matrix because of ionisation effects or low recoveries

	Sedir	nent	Wa	ter	Mus	ssel	Fish	liver
	Average	s.d.	Average	s.d.	Average	s.d.	Average	s.d.
6:2 FTS	120	15.9	114	0.25	541	4.20	436	24.4
PFBS	86	11.5	122	33.9	102	21.3	78	27.2
PFHxS	77	3.46	93	2.25	110	6.49	99	3.97
PFOS	89	4.06	103	3.02	102	2.82	98	4.88
PFDS	84	7.00	74	16.2	64	8.22	44	2.43
PFPeA	40	0.90	93	0.34	110	0.55	116	8.28
PFHxA	47	1.84	97	1.20	102	2.73	96	1.52
PFHpA	38	3.03	69	38.6	35	5.38	66	29.7
PFOA	47	1.54	99	0.69	103	7.72	96	1.16
PFNA	68	8.80	103	0.01	117	0.80	105	23.9
PFDA	15	12.8	97	1.78	100	0.41	98	3.77
PFUnDA	70	9.3	96	0.12	113	4.63	100	8.17
PFDoDA	62	9.7	80	14.1	64	6.88	53	3.96
PFTrDA	70	14.4	57	13.2	24	5.58	24	1.18
PFTeDA	67	11.2	54	13.8	9	2.45	9	1.07

Table A3. Recoveries (%) and standard deviations of labelled compounds added as internal standards to the studied samples

	Soil (<i>n</i> = 10)		Sediment $(n = 9)$		Water (Water $(n = 3)$		(<i>n</i> = 3)	Crab $(n = 4)$		Fish liver $(n = 4)$	
	Average	s.d.	Average	s.d.	Average	s.d.	Average	s.d.	Average	s.d.	Average	s.d.
PFHxS	60	10.8	70	6.89	62	21.0	80	4.26	51	4.27	57	8.41
PFOS	31	17.0	58	5.32	52	7.53	77	34.0	107	44.8	21	15.8
PFHxA	39	11.1	54	7.63	85	8.53	96	12.6	99	37.5	93	20.4
PFOA	52	18.2	57	6.07	86	14.6	87	5.23	77	14.8	87	18.8
PFNA	30	13.2	54	13.5	62	3.76	152	68.6	163	57.9	38	25.7
PFDA	NQ	NQ	38	11.9	132	28.7	84	37.2	146	80.0	94	73.9
PFUnDA	25	10.7	36	13.4	117	26.1	98	38.1	121	63.5	61	46.7
PFDoDA	26	10.8	28	11.9	62	21.0	80	4.26	51	4.27	57	8.41

NQ, not quantified because of ionisation effects

Table A4. Recoveries (%) and standard deviations of PFOS isomers in a Fluka standard spiked to sediment (n = 3) and water (n = 3)

Chromatographic separation was performed for 1/2/6-PFOS and 3,5/4,5/5,5-PFOS using the quantification method thus not

separating all isomers

	L-PFOS		1/2/6-PFOS		3/4/5-PFOS		3,5/4,5/5,5-PFOS		4,4-PFOS	
	Average	s.d.	Average	s.d.	Average	s.d.	Average	s.d.	Average	s.d.
Sediment	64.1	3.13	54.9	4.10	56.6	5.30	50.6	7.63	59.7	16.0
Water	87.2	3.63	82.4	2.34	84.1	4.39	85.3	6.95	86.4	8.99

Table A5.Concentration (ng g-1 DW) of PFAAs and 6:2 FTS in soil with increasing distance from
a fire-fighting training platform at Flesland

NQ, not quantified because of ionisation effects. Data marked with an asterisk (*) were quantified with a higher uncertainty because of ionisation effects (recovery between 10 and 20%)

	0 m	10 m	20 m	30 m	40 m	50 m	75 m	100 m	150 m	200 m
Dry weight (%)	92%	73%	67%	78%	64%	67%	71%	80%	57%	58%
6:2 FTS	612*	2101*	751*	329*	38	5.2	7.7	9.2	2.5	0.84
PFBS	0.29	1.4	1.8	1	0.67	0.28	< 0.11	< 0.11	< 0.11	< 0.11
PFHxS	6.2	17	21	15	5.2	5.3	1.1	0.54	0.64	0.12
PFOS	273*	1905*	705*	331*	129	96	24	6.1	7.6	1.6
PFDS	3.2*	54*	8.5*	4*	2.8	1.1	0.36	0.19	0.13	< 0.10
PFPeA	0.68	7	17	28	17	11	8.8	3.7	0.88	0.52
PFHxA	2.5	8.1	10.2	18.5	11.5	6.8	3.6	1.5	0.32	0.18
PFHpA	0.8	4.5	2.8	4.6	6.7	2.3	1.8	0.77	0.27	0.19
PFOA	1.4	7.7	4.4	4.4	12.2	2.7	1.2	0.54	0.36	0.23
PFNA	<1.0	NQ	NQ	1.7*	6.4	<1.0	<1.0	<1.0	< 0.60	< 0.70
PFDA	NQ	NQ	NQ	NQ						
PFUnDA	0.94	5.8*	1.6*	<1.5	3.7	0.48	< 0.1	< 0.5	< 0.5	< 0.5
PFDoDA	0.58	3.77*	NQ	NQ	4.1	0.6	< 0.1	0.13	0.17	< 0.1
PFTrDA	< 0.1	0.25*	< 0.1	0.14*	0.32	0.32	< 0.1	< 0.1	< 0.1	< 0.1
PFTeDA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.3	< 0.1	< 0.11	< 0.1	< 0.1	< 0.1

Table A6.Concentration (ng g⁻¹ DW) of PFAAs and 6:2 FTS in sediment samples from Lake
Langavatn near the fire-fighting training platform at Flesland

	1:1	1:2	1:3	2:1	2:2	2:3	3:1	3:2	3:3
Dry weight (%)	8.2%	8.5%	9.2%	7.0%	8.1%	12%	12%	12%	13%
6:2 FTS	9.1	8.4	9.8	12	7.8	1.5	4.1	7.3	8.7
PFBS	< 0.11	0.17	< 0.11	< 0.14	< 0.14	< 0.10	< 0.10	< 0.10	< 0.10
PFHxS	2.2	2.4	2.6	1.4	1.3	0.8	0.65	NQ	0.7
PFOS	70	49	70	88	85	35	49	57	53
PFDS	0.89	0.22	0.42	< 0.21	0.38	< 0.13	1.7	1.3	0.4
PFPeA	0.91	0.52	0.69	0.69	< 0.57	0.42	0.78	0.57	0.37
PFHxA	1.3	0.7	0.9	0.76	<0.6	0.58	1.6	0.7	0.45
PFHpA	0.32	0.2	0.28	< 0.1	< 0.5	< 0.5	0.15	0.17	0.17
PFOA	< 0.5	< 0.5	< 0.5	< 0.75	< 0.75	< 0.75	< 0.5	< 0.5	< 0.5
PFNA	<2.5	<2.5	<2.5	<3.2	<2.8	<1.9	<1.8	<1.9	<1.8
PFDA	NQ	NQ	NQ	NQ	NQ	NQ	NQ	NQ	NQ
PFUnDA	11	9.8	4.9	NQ	23	0.56	21	26	25
PFDoDA	0.5	< 0.5	< 0.5	NQ	0.3	< 0.11	0.76	0.96	0.18
PFTrDA	3.2	0.81	0.77	< 0.1	2.5	< 0.1	7.9	11	0.9
PFTeDA	<0.28	<0.28	<0.28	<0.36	<0.31	<0.21	<0.20	< 0.21	<0.20

NQ, not quantified because of ionisation effects or low recoveries

Table A7. Concentration (ng L⁻¹) of PFAAs and 6:2 FTS in seepage water samples taken from the fire-fighting training platform at Flesland

Analysed with two different mass spectrometers, diluted 5 times on QPXE, and 100 times on Xevo TQS.

		QPXE			Xevo	
	1	2	3	1 (100×)	2 (100×)	3 (100×)
6:2 FTS	6693	5254	5110	4983	3878	4334
PFBS	74	68	148	74	52	53
PFHxS	471	413	319	540	400	392
PFOS	2078	1581	1427	1890	1491	1371
PFDS	< 0.41	< 0.39	< 0.38	0.13	<idl< td=""><td><idl< td=""></idl<></td></idl<>	<idl< td=""></idl<>
PFPeA	631	552	498	775	661	586
PFHxA	554	439	385	561	455	424
PFHpA	205	177	172	215	180	176
PFOA	191	143	130	189	145	140
PFNA	33	22	30	36	27	26
PFDA	4.2	3.4	3.7	5.3	4.4	4.2
PFUnDA	17	9.1	6.8	18	8.7	8.6
PFDoDA	< 0.62	< 0.58	< 0.57	1.1	1.7	0.67
PFTrDA	< 0.60	< 0.27	< 0.27	<idl< td=""><td><idl< td=""><td>0.54</td></idl<></td></idl<>	<idl< td=""><td>0.54</td></idl<>	0.54
PFTeDA	< 0.29	< 0.27	< 0.27	3.5	<idl< td=""><td><idl< td=""></idl<></td></idl<>	<idl< td=""></idl<>

IDL Instrument detection limit, was not established on the Xevo instrument

Table A8.Concentration (ng g⁻¹ FW) of PFAAs and 6:2 FTS in biota samples from LakeLangavatn (trout liver) and receiving sea (crab and mussel) near a fire-fighting training platform at
Flesland

NQ, not quantified because of ionisation effects; Det, detected but not quantified because of ionisation effects. Data marked with an asterisk (*) were quantified with a higher uncertainty because of ion suppression (recovery between 10 and 20%)

	Mussel	Mussel	Mussel	Crab	Crab	Crab	Crab	Trout	Trout	Trout	Trout
	11200001	11200001	11200001	erue	erue	erue	erue	liver	liver	liver	liver
	1	2	3	1	2	3	4	1	2	3	4
6:2 FTS	NQ	NQ	NQ	NQ	NQ	NQ	NQ	Det	Det	Det	Det
PFBS	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	<1.3	< 0.10	< 0.05	< 0.05	< 0.30	< 0.30
PFHxS	< 0.05	< 0.05	< 0.05	0.46	0.28	0.12	< 0.10	268	132	118	123
PFOS	< 0.15	< 0.15	< 0.15	1	4.9*	2.3	0.8	2103	2407	2082	2532
PFDS	< 0.05	< 0.05	< 0.05	< 0.05	0.56	0.17	0.13	65	37	57	49
PFPeA	< 0.20	< 0.50	< 0.50	< 0.30	< 0.20	< 0.97	< 0.20	< 0.96	< 0.20	< 0.51	< 0.50
PFHxA	< 0.30	<1.0	<1.0	< 0.10	< 0.29	< 0.16	< 0.30	< 0.15	0.24	< 0.2	< 0.15
PFHpA	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.10	< 0.05	< 0.10	< 0.05	< 0.07	< 0.05
PFOA	< 0.07	< 0.08	< 0.08	0.82	< 0.70	< 0.10	0.16	0.49	< 0.40	< 0.60	< 0.20
PFNA	< 0.10	< 0.10	< 0.10	0.12	< 0.30	< 0.23	< 0.20	NQ	4	NQ	NQ
PFDA	< 0.10	< 0.10	< 0.10	< 0.20	< 0.20	< 0.20	< 0.20	14	10*	11	11
PFUnDA	< 0.10	< 0.10	< 0.10	0.51	<1.0	1.2	0.72	140	81	95	89
PFDoDA	< 0.10	< 0.10	< 0.10	0.42	< 0.5	< 0.5	0.24	14	5.6	5.6	4.7
PFTrDA	0.47	0.38	0.38	1.1	1.2*	2.0	0.95	83	39	28	24
PFTeDA	NQ	NQ	NQ	NQ	NQ	NQ	NQ	NQ	NQ	NQ	NQ

Table A9. Percentage of the total concentration (ng g⁻¹ DW) of PFOS isomers in soil taken with increasing distance to a fire-fighting training area in Flesland

	L-PFOS	1-PFOS	2-PFOS	6-PFOS	3/4/5-PFOS	3,5-PFOS	4,5/5,5-PFOS	4,4-PFOS
0 m	63	5.1	0.98	13	17	0.46	0.07	0.49
10 m	71	3.7	0.72	12	13	0.27	0.23	
40 m	80	2.4	0.45	8.0	8.6	0.14	0.18	
75 m	79	2.9	0.34	8.2	8.7	0.13	0.19	
100 m	85	1.2	0.55	5.8	6.7		0.16	
150 m	71	3.3	0.82	11	13	0.37	0.54	
200 m	84	1.9		4.6	9.1	0.21		

Missing values are non-detections, generally below 0.1%

Table A10.Percentage of the total concentration (ng g^{-1} DW) of PFOS isomers in seepage waterfrom the fire-fighting training area in Flesland and sediment in the receiving Lake Langavatnet

Missing values are non-detections, generally below 0.1%

	L-PFOS	1-PFOS	2-PFOS	6-PFOS	3/4/5-PFOS	3,5-PFOS	4,5/5,5-PFOS	4,4-PFOS
Water	61	4.6	1.0	14	18	0.49	0.61	0.10
Water	60	4.7	1.1	15	18	0.47	0.57	0.07
Water	58	5.4	1.3	15	19	0.52	0.65	0.09
Sediment 1:1	77	2.4	0.67	9.2	10	0.19	0.21	
Sediment 2:1	77	3.4	0.57	9.4	9.5	0.17	0.19	
Sediment 3:1	85	1.3	0.52	7.2	5.8	0.10	0.13	

Table A11. Percentage of the total concentration (ng g⁻¹ DW) of PFOA isomers in soil taken with increasing distance to a fire-fighting training area in Flesland

	L-PFOA	2-PFOA	3/4/6-PFOA	5-PFOA	3,5-PFOA	4,5-PFOA	4,4-PFOA	5,5-PFOA
0 m	80.5		12.7	6.7				
10 m	85.2		8.9	4.4			1.6	
40 m	94.1		1.9	0.86	0.20		3.0	
75 m	100							
100 m	100							
150 m	100							
200 m	100							

Missing values are non-detections, generally below 0.1%

Table A12.Percentage of the total concentration (ng g^{-1} DW) of PFOA isomers in seepage water
from the fire-fighting training area in Flesland

Missing values are non-detections, generally below 0.1%

	L-PFOA	2-PFOA	3/4/6-PFOA	5-PFOA	3,5-PFOA	4,5-PFOA	4,4-PFOA	5,5-PFOA
Water	72		14	13	0.36			0.14
Water	76		15	8.1	0.42	0.28		0.12
Water	75		14	10				0.29

Table A13. Percentage of the total concentration (ng g⁻¹ DW) of PFOS isomers in Trout liver from
Lake Langavatnet

	L-PFOS	1-PFOS	2-PFOS	6-PFOS	3/4/5-PFOS	3,5-PFOS	4,5/5,5-PFOS	4,4-PFOS
Fish	87	2.2	0.32	5.7	5.0			
Fish	90	1.6	0.19	4.8	3.7			
Fish	89	2.0	0.23	4.3	4.1			
Fish	88	2.3	0.28	5.1	4.2			

Missing values are non-detections, generally below 0.1%