Supplementary material

The atmospheric chemical reaction of 4-tert-butylphenol initiated by OH radicals

Chen $Gong^A$, Xiaomin $Sun^{A,B}$ and Chenxi Zhang^A

^AEnvironment Research Institute, Shandong University, Jinan 250100, P.R. China.

^BCorresponding author. Email: sxmwch@sdu.edu.cn

Fig. S1. The profile of the potential energy surface for the addition reactions of 4-*tert*-butylphenol (TBP) with OH radicals.

Fig. S2. The profile of the potential energy surface for the abstraction reactions of 4-*tert*-butylphenol (TBP) with OH radicals.

Fig. S3. The profile of the potential energy surface for IM2b reactions.

Fig. S4. The profile of the potential energy surface for IM4b reactions.

Table S1. The rate constants of addition reactions with the canonical variationaltransition with small-curvature tunnelling method at 200–500 K

The bold entries are the rate constants at room temperature, which are discussed in the

	• .
manuscr	1pt

<i>T</i> (K)	Rate constants (cm ³ molecule ^{-1} s ^{-1})						
	Ι	II	III	IV	V	VI	
200	7.22×10^{-16}	1.01×10^{-14}	3.98×10^{15}	6.50×10^{-15}	9.92×10^{-18}	9.94×10^{-16}	
220	9.26×10^{16}	1.01×10^{-14}	4.28×10^{-15}	7.04×10^{-15}	1.75×10^{17}	1.33×10^{15}	
240	1.15×10^{-15}	1.03×10^{-14}	4.60×10^{-15}	7.62×10^{-15}	2.82×10^{17}	1.71×10^{-15}	
260	1.40×10^{-15}	1.06×10^{-14}	4.94×10^{-15}	8.24×10^{-15}	4.28×10^{17}	2.14×10^{-15}	
280	1.66×10^{-15}	1.09×10^{-14}	5.30×10^{-15}	8.88×10^{15}	6.18×10^{17}	2.60×10^{-15}	
298.15	$\textbf{1.93}\times\textbf{10}^{-15}$	$\textbf{1.12}\times\textbf{10}^{-14}$	$\textbf{5.64} \times \textbf{10}^{-15}$	$\textbf{9.50}\times \textbf{10}^{-15}$	$\textbf{8.28}\times \textbf{10}^{-17}$	$\textbf{3.04}\times \textbf{10}^{-15}$	
320	2.26×10^{-15}	1.17×10^{-14}	6.08×10^{-15}	1.03×10^{-14}	1.14×10^{-16}	3.64×10^{-15}	
340	2.60×10^{-15}	1.22×10^{-14}	6.50×10^{-15}	1.10×10^{-14}	1.48×10^{-16}	4.20×10^{-15}	
360	2.96×10^{-15}	1.30×10^{-14}	6.96×10^{-15}	1.18×10^{-14}	1.87×10^{-16}	4.78×10^{-15}	
380	6.92×10^{-15}	1.36×10^{-14}	7.42×10^{-15}	1.27×10^{-14}	2.32×10^{16}	5.40×10^{-15}	
400	7.80×10^{-15}	1.43×10^{-14}	7.90×10^{-15}	1.36×10^{-14}	2.84×10^{16}	6.02×10^{-15}	
450	1.02×10^{-14}	1.61×10^{-14}	9.16×10^{-15}	1.59×10^{14}	4.42×10^{16}	7.58×10^{15}	
500	1.31×10^{14}	1.82×10^{-14}	1.04×10^{-14}	1.86×10^{-14}	6.42×10^{16}	9.06×10^{-15}	

The bold entries are the rate constants at room temperature, which are discussed in the

$T(\mathbf{K})$	Rate constants (cm ³ molecule ^{-1} s ^{-1})						
	VII	VIII	IX	Х	XI	XII	
200	1.78×10^{-16}	3.89×10^{-18}	$4.75 imes 10^{-21}$	1.36×10^{-19}	2.32×10^{-20}	8.23×10^{-17}	
220	$3.44\times10^{\scriptscriptstyle-16}$	7.57×10^{-18}	1.91×10^{-20}	4.34×10^{-19}	6.91×10^{-20}	1.95×10^{16}	
240	6.01×10^{-16}	1.34×10^{17}	6.17×10^{-20}	1.15×10^{-18}	1.74×10^{-19}	4.06×10^{-16}	
260	9.71×10^{-16}	2.19×10^{17}	1.69×10^{-19}	2.68×10^{-18}	3.85×10^{-19}	7.64×10^{-16}	
280	1.48×10^{-15}	3.38×10^{17}	4.07×10^{-19}	5.56×10^{-18}	7.68×10^{-19}	1.32×10^{-15}	
298.15	$\textbf{2.07}\times\textbf{10}^{-15}$	$\textbf{4.80}\times\textbf{10}^{-17}$	$\textbf{8.24}\times \textbf{10}^{-\textbf{19}}$	$\textbf{1.00}\times\textbf{10}^{-17}$	$\textbf{1.34}\times\textbf{10}^{-18}$	$\textbf{2.07}\times\textbf{10}^{-15}$	
320	2.98×10^{-15}	7.00×10^{-17}	1.75×10^{-18}	1.88×10^{-17}	2.44×10^{-18}	3.33×10^{-15}	
340	4.01×10^{-15}	9.57×10^{17}	3.25×10^{-18}	2.12×10^{17}	3.97×10^{18}	4.91×10^{-15}	
360	5.25×10^{15}	1.27×10^{-16}	5.66×10^{-18}	3.37×10^{17}	6.19×10^{-18}	6.99×10^{-15}	
380	6.71×10^{-15}	1.65×10^{-16}	9.40×10^{-18}	5.13×10^{17}	9.27×10^{-18}	9.63×10^{-15}	
400	8.41×10^{-15}	2.09×10^{16}	1.49×10^{17}	7.54×10^{-17}	1.34×10^{17}	1.30×10^{14}	
450	1.38×10^{14}	3.55×10^{16}	4.08×10^{-17}	1.74×10^{-16}	3.01×10^{-17}	2.46×10^{-14}	
500	2.09×10^{14}	5.55×10^{-16}	9.42×10^{-17}	3.52×10^{16}	5.94×10^{-17}	4.19×10^{14}	

manuscript