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Fig. S1. Measured and modelled H2O2 concentration in H2O2 + UV control experiment. The concentration of H2O2 

as a function of time in the H2O2 + UV control experiments was modelled (FACSIMILE for Windows Version 

4.1.45) using the following reactions and rate constants provided by Lim et al.
[1]

 with the expection of k1. 
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The H2O2 photolysis rate constant, k1 = 1.0 × 10
–4

 was determined by fitting the model to measured H2O2 

concentrations. This value of k1 was then used in the FACSIMILE model for glyoxal to estimate the 

concentration of OH
•
 (M; [OH

•
]initial = 7.8 × 10

–13
, [OH

•
]final = 6.0 × 10

–12
, [OH

•
]average = (1 ± 2) × 10

–12
) 

during glyoxal experiments from initial precursor concentrations (e.g., 5 mM H2O2, 1 mM GLY).
[1]
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Fig. S2. Modelled OH
•
 concentration in GLY + OH

•
 in the presence and absence of HNO3. Note OH

•
 is formed 

from H2O2 photolysis and reacts with GLY and its reaction products. Inclusion of HNO3 reactions discussed in the 

methods does not change [OH
•
] prediction. 

 

Fig. S3. Modelled oxalate concentrations from GLY + OH
•
 with and without HNO3. 
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Fig. S4. Modelled nitrate concentration in GLY + OH
•
 + HNO3 experiment. 

 

Fig. S5. Modelled pH in GLY + OH
•
 experiments conducted in the presence and absence of HNO3. 
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Fig. S6. Oxalate concentration measured by IC in GLY + HNO3 + UV control experiment. Some oxalate 

formation is seen, but concentrations are much lower and formation is much slower than in GLY + OH
•
 + HNO3 

experiments. OH
•
 production from HNO3 + UV is modest. 

 

Fig. S7. Nitrate concentration measured by IC in GLY + HNO3 + UV control experiment. 
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Fig. S8. Nitrate concentration measured by IC in GLY + OH
•
 + HNO3 experiment. Error bars represent the 

coefficient of variation (<1 %) across three experiments. 
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