Supplementary material

## Glyoxal SOA chemistry: effects of dilute nitrate and ammonium and support for organic radical-radical oligomer formation

Jeffrey R. Kirkland,<sup>A</sup> Yong B. Lim,<sup>A</sup> Yi Tan,<sup>A,C</sup> Katye E. Altieri,<sup>B</sup> and Barbara J. Turpin<sup>A,D</sup>

<sup>A</sup>Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA.

<sup>B</sup>Department of Geosciences, Princeton University, Princeton, NJ 08540, USA.

<sup>C</sup>Present address: The Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

<sup>D</sup>Corresponding author. Email: turpin@envsci.rutgers.edu



**Fig. S1.** Measured and modelled  $H_2O_2$  concentration in  $H_2O_2 + UV$  control experiment. The concentration of  $H_2O_2$  as a function of time in the  $H_2O_2 + UV$  control experiments was modelled (FACSIMILE for Windows Version 4.1.45) using the following reactions and rate constants provided by Lim et al.<sup>[1]</sup> with the expection of  $k_1$ .

$$H_2O_2 + UV \rightarrow OH^{\bullet} + OH^{-}(k_1)$$
$$OH^{\bullet} + H_2O_2 \rightarrow HO_2 + H_2O$$
$$HO_2 + H_2O_2 \rightarrow OH^{\bullet} + H_2O + O_2$$
$$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$$
$$OH^{\bullet} + HO_2 \rightarrow H_2O + O_2$$
$$OH^{\bullet} + OH^{-} \rightarrow H_2O_2$$

The H<sub>2</sub>O<sub>2</sub> photolysis rate constant,  $k_1 = 1.0 \times 10^{-4}$  was determined by fitting the model to measured H<sub>2</sub>O<sub>2</sub> concentrations. This value of  $k_1$  was then used in the FACSIMILE model for glyoxal to estimate the concentration of OH<sup>•</sup> (M; [OH<sup>•</sup>]<sub>initial</sub> = 7.8 × 10<sup>-13</sup>, [OH<sup>•</sup>]<sub>final</sub> = 6.0 × 10<sup>-12</sup>, [OH<sup>•</sup>]<sub>average</sub> = (1 ± 2) × 10<sup>-12</sup>) during glyoxal experiments from initial precursor concentrations (e.g., 5 mM H<sub>2</sub>O<sub>2</sub>, 1 mM GLY).<sup>[1]</sup>



**Fig. S2.** Modelled OH<sup>•</sup> concentration in GLY + OH<sup>•</sup> in the presence and absence of HNO<sub>3</sub>. Note OH<sup>•</sup> is formed from  $H_2O_2$  photolysis and reacts with GLY and its reaction products. Inclusion of HNO<sub>3</sub> reactions discussed in the methods does not change [OH<sup>•</sup>] prediction.



Fig. S3. Modelled oxalate concentrations from GLY + OH' with and without HNO<sub>3</sub>.



**Fig. S4.** Modelled nitrate concentration in GLY + OH' + HNO<sub>3</sub> experiment.



Fig. S5. Modelled pH in GLY + OH' experiments conducted in the presence and absence of HNO<sub>3</sub>.



**Fig. S6.** Oxalate concentration measured by IC in  $GLY + HNO_3 + UV$  control experiment. Some oxalate formation is seen, but concentrations are much lower and formation is much slower than in  $GLY + OH^{\bullet} + HNO_3$  experiments. OH production from  $HNO_3 + UV$  is modest.



Fig. S7. Nitrate concentration measured by IC in  $GLY + HNO_3 + UV$  control experiment.



**Fig. S8.** Nitrate concentration measured by IC in  $GLY + OH' + HNO_3$  experiment. Error bars represent the coefficient of variation (<1 %) across three experiments.

## References

[1] Y. B. Lim, Y. Tan, M. J. Perri, S. P. Seitzinger, B. J. Turpin, Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. *Atmos. Chem. Phys.* 2010, 10, 10521–0539. doi:10.5194/acp-10-10521-2010