Supplementary material

Metal complexation by organic ligands (L) in near-pristine estuarine waters: evidence for the identity of L

Hollydawn Murray,^{A,B,C}, Guillaume Meunier,^A Dagmar B. Stengel^B and Rachel Cave^A

^AEarth and Ocean Sciences, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.

^BBotany and Plant Science, School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.

^CCorresponding author. Email: hollydawn.murray@gmail.com

Table S1. Comparison of sample handling and treatment methods for spiked artificial seawater and seawater samples collected from the Lough Furnace estuary, for total dissolved labile metal concentration (mean \pm s.d., n = 5)

Methods tested include: (A) filtration and immediate analysis (conventional); (B) filtration, freezing, thawing, then analysis (conventional) and (C) freezing, thawing, filtration, then analysis (unconventional and employed in this study). Asterisks denote significant difference in labile metal concentration between methods, within a water type

Element	Artificial seawater [M] _L (nM)			Lough Furnace seawater [M] _L (nM)		
	А	В	С	А	В	С
Cd	1.11 ± 0.19	1.03 ± 0.05	1.07 ± 0.05	0.69 ± 0.19	0.66 ± 0.04	0.66 ± 0.03
Zn	4.57 ± 0.20	4.40 ± 0.62	5.20 ± 0.16	2.42 ± 0.28	2.16 ± 0.25	$3.34 \pm 0.09^{*}$

Table S2. Accuracy of the analytical procedures employed for seaweed metal concentration and seawater total dissolved metal concentration (mean \pm s.d., n = 3)

The algal CRM (NIES number 9) certified by the National Institute for Environmental Studies, Japan Environment Agency and the near-shore seawater CRM (CASS-5) certified by the National Research Council of Canada

	NI	ES number	9		CASS-5	
Element	Measured	RSD	Certified	Measured (nM)	RSD	Certified
	$(\mu g g^{-1} DW)$	(%)	(µg g ⁻¹ DW)		(%)	(nM)
Cd	0.17 ± 0.026	15.3	0.15 ± 0.002	0.20 ± 0.02	10.5	0.19 ± 0.02
Cu	5.00 ± 0.58	11.59	4.9 ± 0.2	6.16 ± 0.21	3.41	5.97 ± 0.44
Pb	1.31 ± 0.15	11.5	1.35 ± 0.05	$0.052 \pm 0.001^{\mathrm{A}}$	1.92	0.053 ± 0.01
Zn	16.13 ± 0.21	1.31	15.6 ± 1.2	12.01 ± 0.25	2.1	10.92 ± 1.03

^ADeposition time was increased from 1 to 5 min