Supplementary material

A micro-sized model for the in vivo study of nanoparticle toxicity: what has *Caenorhabditis elegans* taught us?

Jinhee Choi, ^{A,E} *Olga V. Tsyusko*, ^{B,C,E} *Jason M. Unrine*, ^{B,C} *Nivedita Chatterjee*, ^A *Jeong-Min Ahn*, ^A *Xinyu Yang*, ^{C,D} *B. Lila Thornton*, ^{C,D} *Ian T. Ryde*, ^{C,D} *Daniel Starnes*^{B,C} *and Joel N. Meyer*^{C,D,E}

^ASchool of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, South Korea.

^BDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA.

^cThe Center for Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708, USA.

^DNicholas School of the Environment and Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708-0328, USA.

^ECorresponding authors. Email: jinhchoi@uos.ac.kr; olga.tsyusko@uky.edu; jnm4@duke.edu

Nanosize	C. elegans strains	Exposure condition	Mechanism		Finding	Ref.
	(life stage of the exposure)		OS related endpoints	OS consequences		
Pt nanoparticles (NPs) $(2.4 \pm 0.7 \text{ nm})$	N2 and <i>mev-1</i> (L4)	0.1 to 1 mM for PtNPt in S-medium	Measurement of reactive oxygen species (ROS) and lipofuscin accumulation, SOD, catalase activity	Antioxidant effect	Pt NPs are superoxide dismutase (SOD) and catalase mimetic scavenge superoxide and hydrogen peroxide. Oxidative stress resistance; antioxidant effect	[1]
Pt NPs ^A	N2 and <i>nuo-1</i> (L4)	1 to 25 μM in S-medium	Measurement of ROS and life span, NAD ⁺ and NADH assays	5 μM conjugated Pt-NPs decreased cytosolic and mitochondrial ROS by inducing NADH oxidase activity	Pt NPs have NADH oxidase activity and rescue the [NAD ⁺]/[NADH] ratio in LB25, leading to effective extension of the lifespan of LB25	[2]
Pt NPs (2.5 ± 1 nm)	N2 (L4 and young adult)	0, 2, 5 or 10 ppb in electrolysed reduced (ERW) medium	Life span assay and ROS detection	Antioxidant effect	Pt NPs in ERW medium extend the longevity of nematode, at least partly by scavenging ROS	[3]
Ag NPs (<100 nm)	N2, sod-, daf-12 and mtl-2	0.1 mg L^{-1} of AgNPs (microarray) 0.05, 0.1 and 0.5 mg L^{-1} , (quantitative reverse- transcriptase real-time PCR, qRT–PCR, lethality, growth, reproduction) In K- medium	Gene expression using microarray followed by qRT–PCR	reproductive failure and toxicity	Changes in <i>sod-3</i> and <i>daf-12</i> gene expressions	[4]

Table 61 Dubliched staviaity studios in C al alated to avidativ $(\mathbf{O}\mathbf{C})$ hanism of torrigit

Nanosize	<i>C. elegans</i> strains (life stage of the exposure)	Exposure condition	Mechanism		Finding	Ref.
			OS related endpoints	OS consequences		
Ag NPs (uncoated, citrate and polyvinyl- pyrrolidone (PVP) coated)	N2, <i>nth-1</i> , <i>sod-2</i> , <i>mtl-2</i> , <i>xpa-1</i> and <i>mev-1</i> (All developmental stages started from [1])	0.5, 5, 25 and 50 mg L ⁻¹ In K-medium	Growth measurement of variety of oxidative stress related mutant strains	Growth inhibition	The result does not support that Ag NP-mediated toxicity can be attributed to oxidative stress	[5]
Ag NP citrate- coated (CTL ₇ - 7 nm), PVP ₈ (8 nm) and PVP ₃₈ (38 nm), gum arabic (GA)-coated GA ₂₂ (22 nm)	N2, sod-3, Pcs-1 and mev-1	20 to 46 μM of Ag in EPA water	Pharmacological (<i>N</i> -acetylcysteine (NAC) and Trolox) rescue of Ag NP toxicity (mortality and growth inhibition)		NAC completely rescued the growth inhibition of all the tested AgNPs. In contrast, partial rescue by trolox was observed in the following order of effect: CIT $7 >$ PVP ₃₈ > GA ₂₂ , and no rescue by trolox was observed for PVP ₈ or GA ₂₂	[6]
Ag NPs (20– 30 nm)	N2, <i>pmk-1</i> and <i>pmk-1::gfp</i>	0.1, 0.5 and 1 mg L ⁻¹ in K-medium	ROS formation, glutathione-S- transferase (GST) enzyme activity	increased ROS formation and decreased reproduction potential	PMK-1 dependent oxidative stress response. Decreased reproductive potential and increased ROS formation induced by AgNPs in wild type (N2) <i>C.</i> <i>elegans</i> were rescued in the <i>pmk-1</i> (km25) mutant.	[7]

Environ. Chem. **2014**, *11*, 227–246 doi:10.1071/EN13187_AC

Nanosize	<i>C. elegans</i> strains (life stage of the exposure)	Exposure condition	Mechanism		Finding	Ref.
			OS related endpoints	OS consequences		
ZnO NP (40– 100 nm)	N2	4, 8, 20, 40, 60, 80 mg L ⁻¹ Zn for 24 h	measuring photocatalytic activity, ROS generation by methylene blue (MB), Lipid peroxidation (MDA)	mortality	Phototoxicity was closely related to photocatalytic ROS generated by the ZnO particles when exposed to natural sunlight for 2 h. In contrast, under artificial laboratory light, 24 h exposure caused toxicity by a mechanism other than photocatalytic ROS generation	[8]
Al ₂ O ₃ NP (60 nm)	N2 and <i>phsp-</i> <i>16.2::gfp</i> (L1, L4, young adult)	51–203.9 mg L^{-1} (acute toxicity – 24 h) 8.1– 30.6 mg L^{-1} (chronic toxicity – 10 day)	Intestinal auto-fluorescence, ROS production measurement	accumulation of intestinal auto- fluorescence as well as stress response in intestine	Adverse effects on intestinal lipofuscin accumulation	[9]
CeO ₂ NP (8.5 nm)	N2 (L1)	1 to 100 nM	Life span, lipofuscin accumulation, ROS production	ROS accumulation and oxidative damage may the cause of cyto- and genotoxicity	Decreased lifespan	[10]

Nanosize	C. elegans strains	Exposure condition	Mechanism		Finding	Ref.
	(life stage of the exposure)		OS related endpoints	OS consequences		
TiO ₂ NPs (10 nm)	N2 and <i>mtl-1</i> , <i>mtl-</i> 2, <i>sod-1</i> , <i>sod-2</i> , <i>sod-3</i> , <i>sod-4</i> , <i>sod-5</i> , <i>mev-1</i> , <i>aak-2</i> , <i>xpa-</i> 1, <i>pcm-1</i> , <i>hsp-</i> 16.48, <i>hsp-16.2</i> , <i>gst-4</i> , <i>gst-8</i> , <i>gst-24</i> , <i>gst-5</i> , <i>gst-42</i> and <i>isp-1</i> mutants (Vong adult stage)	20 g ⁻¹	Lethality, intestinal auto- fluorescence, ROS production and gene expression (qPCR)	Comparison of all mentioned endpoints in wild-type and oxidative stress related mutant nematodes	Oxidative stress-related genes such as <i>sod-2</i> and <i>sod-3</i> , might be responsible for TiO ₂ -NP toxicity	[11]
Fluorescent nanodiamond (FND) (120 nm)	N2, <i>daf-16::gfp</i> and <i>gcs-1::gfp</i> (L4, young adults)	1 mg L ⁻¹ for 2–3 h and moved to bacteria seeded nematode growth agar medium (NGM) plates. Feeding and microinjection of FND into gonads of the worm	ROS measurement (young adults)	FND does not induce ROS generation	FNDs are stable and nontoxic and do not cause any detectable stress, change in longevity, or reproductive potential. FND is expected to become one of the most prominent fluorescent nanoprobes for long-term tracking and imaging	[12]

^APt NPs were functionalised by conjugation with this fusion protein at a 1 : 1 ratio of TAT-platinum binding peptide (PtBP) to Pt atoms

References

J. Kim, M. Takahashi, T. Shimizu, T. Shirasawa, M. Kajita, A. Kanayama, Y. Miyamoto, Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of *Caenorhabditis elegans. Mech. Ageing Dev.* 2008, *129*, 322. doi:10.1016/j.mad.2008.02.011

[2] Y. Sakaue, J. Kim, Y. Miyamoto, Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient *Caenorhabditis elegans*, nuo-1. *Int. J. Nanomed.* **2010**, *5*, 687.

[3] H. X. Yan, T. Kinjo, H. Z. Tian, T. Hamasaki, K. Teruya, S. Kabayama, S. Shirahata, Mechanism of the lifespan extension of *Caenorhabditis elegans* by electrolyzed reduced water-participation of Pt nanoparticles. *Biosci. Biotechnol. Biochem.* **2011**, *75*, 1295. <u>doi:10.1271/bbb.110072</u>

[4] J.-y. Roh, S. J. Sim, J. Yi, K. Park, K. H. Chung, D.-y. Ryu, J. Choi, Ecotoxicity of silver nanoparticles on the soil nematode *Caenorhabditis elegans* using functional ecotoxicogenomics. *Environ. Sci. Technol.* 2009, 43, 3933. doi:10.1021/es803477u

J. N. Meyer, C. A. Lord, X. Y. Yang, E. A. Turner, A. R. Badireddy, S. M. Marinakos, A. Chilkoti, M.
R. Wiesner, M. Auffan, Intracellular uptake and associated toxicity of silver nanoparticles in *Caenorhabditis* elegans. Aquat. Toxicol. 2010, 100, 140. doi:10.1016/j.aquatox.2010.07.016

[6] X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in *Caenorhabditis elegans*. *Environ. Sci. Technol.* **2012**, *46*, 1119. <u>doi:10.1021/es202417t</u>

[7] D. Lim, J.-y. Roh, H.-j. Eom, J.-Y. Choi, J. Hyun, J. Choi, Oxidative stress-related *pmk-1* P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode *Caenorhabditis elegans. Environ. Toxicol. Chem.* **2012**, *31*, 585. <u>doi:10.1002/etc.1706</u>

[8] H. Ma, N. J. Kabengi, P. M. Bertsch, J. M. Unrine, T. C. Glenn, P. L. Williams, Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode *Caenorhabditis elegans*: the importance of illumination mode and primary particle size. *Environ. Pollut.* **2011**, *159*, 1473. doi:10.1016/j.envpol.2011.03.013

[9] S. H. Yu, Q. Rui, T. Cai, Q. L. Wu, Y. X. Li, D. Y. Wang, Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al₂O₃-nanoparticle. *Environ. Toxicol. Pharmacol.* **2011**, *32*, 233. <u>doi:10.1016/j.etap.2011.05.008</u>

[10] H. Zhang, X. He, Z. Zhang, P. Zhang, Y. Li, Y. Ma, Y. Kuang, Y. Zhao, Z. Chai, Nano-CeO₂ exhibits adverse effects at environmental relevant concentrations. *Environ. Sci. Technol.* 2011, 45, 3725. doi:10.1021/es103309n

[11] Q. Rui, Y. Zhao, Q. Wu, M. Tang, D. Wang, Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode *Caenorhabditis elegans* with mutations of genes required for oxidative stress or stress response. *Chemosphere* **2013**, *93*, 2289. <u>doi:10.1016/j.chemosphere.2013.08.007</u>

[12] N. Mohan, C. S. Chen, H. H. Hsieh, Y. C. Wu, H. C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in *Caenorhabditis elegans*. *Nano Lett.* **2010**, *10*, 3692. doi:10.1021/nl1021909