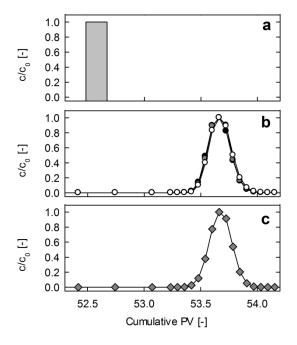
Supplementary material

Antimony leaching from contaminated soil under manganese- and iron-reducing conditions: column experiments


Kerstin Hockmann, A.C Susan Tandy, A Markus Lenz and Rainer Schulin

^AInstitute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, CH-8092 Zurich, Switzerland.

^BInstitute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Gründenstrasse 40, CH-4132 Muttenz, Switzerland.

Bromide tracer experiment

A 2 mM bromide solution prepared from KBr (Merck, Darmstadt, Germany) in 15-mM sodium lactate (Sigma–Aldrich, Steinheim, Germany) was applied as a step injection at the end of the experiment. Bromide concentrations were determined in non-acidified effluent fractions of 0.15 pore volume (PV) (~11 mL) by ion chromatography with 3.2 mM Na₂CO₃ and 1 mM NaHCO₃ as mobile phase (861 Advanced Compact, Metrosep A Supp 5 150/4 column, Metrohm, Zofingen, Switzerland).

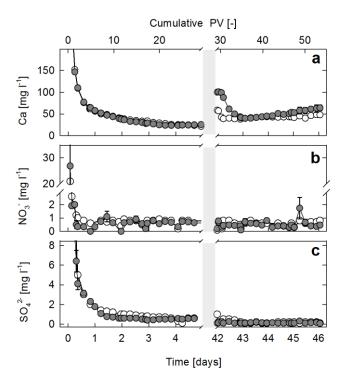
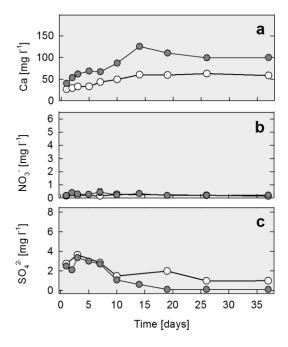


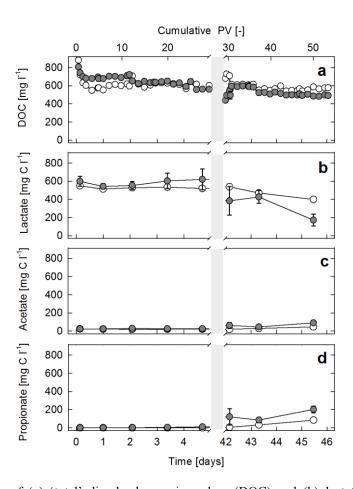
Fig. S1. Conservative tracer experiment using a bromide step injection (initial concentration (c_0) = 2 mM Br⁻) at the end of the column experiment. (a) Br⁻ concentration in the feeding solution, (b) Br⁻ concentration in the effluent from the three non-sterilised soil columns, and (c) Br⁻ concentration in the effluent from the sterilised soil column. Bromide concentrations were determined in effluent fractions of 0.15 pore volume (PV) (~11 mL) by ion chromatography.


^CCorresponding author. Email: kerstin.hockmann@env.ethz.ch

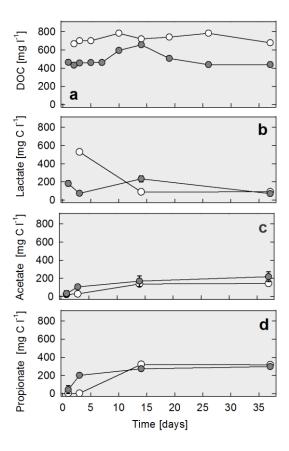
Analysis of anions and Ca in the effluent and in the soil solution during the flow interruption

Non-acidified subsamples for nitrate (NO₃⁻), sulfate (SO₄²⁻) and phosphate (PO₄³⁻) measurements were stored at –20 °C until analysis and determined by ion chromatography with 3.2 mM Na₂CO₃ and 1 mM NaHCO₃ as mobile phase (Metrohm 861 Advanced Compact, Metrosep A Supp 5 150/4 column). Calcium was measured on 0.2-μm filtered (WICOM) and HNO₃-acidified samples by inductively coupled plasma–optical emission spectroscopy (ICP-OES; Vista-MPX CCS simultaneous, Varian, Heppenheim, Germany).

Fig. S2. Concentration of (a) calcium, (b) nitrate (NO_3^-) and (c) sulfate (SO_4^{2-}) in the effluent from the non-sterilised (closed circles) and sterilised soil columns (open circles). Phosphate concentrations were below the detection limit (0.2 mg L⁻¹). The grey shaded area refers to the 37-days flow interruption. Error bars are the standard error of three non-sterilised columns (often smaller than the symbol).


Fig. S3. Concentrations of (a) calcium, (b) nitrate (NO_3^-) and (c) sulfate (SO_4^{2-}) in the soil pore water during the flow interruption. Phosphate concentrations were below the detection limit (0.2 mg L^{-1}) . Closed circles refer to non-sterilised and open circles to sterilised soil columns. Error bars are the standard error of three non-sterilised columns (often smaller than the symbol).

Dissolved organic carbon (DOC) and short chain organic acids in the effluent and in the soil solution during the flow interruption


Acidified subsamples for lactate measurements were stored at –4 °C until analysis and determined by ion chromatography (Metrohm 861 Advanced Compact) with 7.5 mM Na₂CO₃ and 0.75 mM NaOH as mobile phase (IonPac AS11 column, Dionex, Reinach, Switzerland).

Acetate and propionate were determined by gas chromatography–mass spectrometry (GC-MS) on a Hewlett–Packard system (model 5890 II, HP, Wilmington, USA) equipped with a 30 m \times 0.25-mm internal diameter capillary column (HP INNOwax; 0.25- μ m film thickness) and a flame ionisation detector. The samples were injected using an SSI injector in split mode (1:10) at 200 °C with N₂ as make-up gas. The oven temperature program was as follows: 80 °C (0.5 min), 80 to 150 °C (2.5 °C min⁻¹), 150 to 180 °C (30 °C min⁻¹), 180 °C (2 min). The carrier gas was H₂ (1.4 mL min⁻¹).

DOC was determined in acidified samples (10 % HNO₃) within 7 days after sampling using a TOC analyser (Shimadzu TOC-L, Reinach, Switzerland).

Fig. S4. Concentration of (a) 'total' dissolved organic carbon (DOC) and (b) lactate, (c) acetate and (d) propionate in the effluent from the non-sterilised (open circles) and sterilised soil columns. The grey shaded area refers to the 37-days flow interruption. Error bars are the standard error of three non-sterilised columns (often smaller than the symbol).

Fig. S5. Concentration of (a) 'total' dissolved organic carbon (DOC) and (b) lactate, (c) acetate, and (d) propionate in the soil pore water during the flow interruption. Closed circles refer to non-sterilised and open circles to sterilised soil columns. Error bars are the standard error of three non-sterilised columns (often smaller than the symbol).