Supplementary material

Arsinothricin, a novel organoarsenic species produced by a rice rhizosphere bacterium

Masato Kuramata,^A Futa Sakakibara,^{B,D} Ryota Kataoka,^{B,E} Kenichi Yamazaki,^B Koji Baba,^B Masumi Ishizaka,^B Syuntaro Hiradate,^C Tsunashi Kamo^C and Satoru Ishikawa^{A,F}

^ASoil Environment Division, National Institute for Agro-Environmental Sciences,

3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.

^BOrganochemical Division, National Institute for Agro-Environmental Sciences,

3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.

^CBiodiversity Division, National Institute for Agro-Environmental Sciences,

3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.

^DDepartment of Applied Biology and Chemistry, Tokyo University of Agriculture,

1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

^EFaculty of Life and Environmental Sciences, University of Yamanashi,

4-4-37 Takeda, Koufu, Yamanashi 400-8510, Japan.

^FCorresponding author. Email: isatoru@affrc.go.jp

Q-Exactive (Thermo Fisher Scientific)		Micromass Quattro Micro API (Waters)					
LC conditions		UPLC conditions					
Column	Waters Atlantis dC18 3 μ m (2.1-mm ID \times	Column	Waters Acquity UPLC BEH C18 1.7 µm (2.1-mm ID ×				
	100 mm)		100 mm)				
Mobile phase	10 % (v/v) CH ₃ CN, 10 mM NH ₄ OAc (pH	Mobile phase	0.1 % (v/v) HCOOH; 10 mM NH ₄ OAc (pH 5.5)				
_	5.5)	-					
Flow rate	0.1 mL min^{-1}	Flow rate	0.2 mL min^{-1}				
Injection volume	2 μL	Injection volume	10 μL				
Column temperature	40 °C	Column temperature	40 °C				
MS conditions		MS conditions					
Ionisation mode	Electrospray ionisation	Ionisation mode	Electrospray ionisation				
Capillary voltage	3.5 kV	Capillary voltage	3.5 kV				
Vaporiser temperature	300–350 °C	Desolvation	350 °C				
		temperature					
Capillary temperature	250 °C	Source temperature	120 °C				
N_2 gas flow rate (arbitrary	45/10	Cone gas flow rate (L	50				
units)		h^{-1})					
S-lens level	50	RF lens	0.2 V				
MS detection		MS detection					
Scan range	m/z 65.00–600.00	Scan range	m/z 50–250				
MS-MS detection		MS-MS detection					
Normalised collision energy	35 % (HCD) stepped 40 %	Collision energy	13.0–14.0 V				
Scan range	m/z 50.00–485.00	Scan range	m/z 50–250				

Table S1. Parameters for the UPLC-MS-MS analysis

Table S2. Column recoveries of As species in the samples

Values are rearranged data from Fig. 2. The recovery value represents the sum

of the As species relative to the initial 13.3 μM As^{III} concentration

Culture period	Concentration (µM)			Recovery (%)	
(h)	Inorganic As	AST	AST-OH	Sum	
5	14.5	0.0	0.0	14.5	108.8
9	14.3	0.0	0.0	14.3	106.9
15	14.7	0.0	0.0	14.7	110.6
24	14.2	0.0	0.5	14.7	110.0
36	13.4	0.0	1.1	14.5	108.9
48	12.7	0.4	1.7	14.8	110.6
60	11.9	0.7	1.9	14.5	108.8
72	11.1	1.3	1.8	14.2	106.5
84	10.7	1.7	1.8	14.2	106.0
96	10.4	2.1	1.8	14.3	106.8
120	10.4	2.3	1.7	14.4	108.2

Table S3. ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) spectral data for arsinothricin (AST) recorded in D₂O

Position	$\delta_{ m H}$ (ppm)	$\delta_{ m C}$ (ppm)
C-1	—	173.9
C-2	3.84 (1H, t, J 5.7 Hz)	55.4
C-3	2.42 (2H, m)	29.6
C-4	2.26 (2H, m)	22.9
C-5	1.97 (3H, s)	16.5

Fig. S1. Purification of arsinothricin (AST) and hydroxyarsinothricin (AST-OH) from the GSRB05 culture medium containing As.

Fig. S2. HPLC-ICP-MS chromatograms of the 120-h sample with DMA and MMA spikes. (a) 2 ng mL^{-1} spikes of DMA and MMA were added to the sample; (b) the original sample. (cps, counts per second.)

Fig. S3. HPLC-ICP-MS chromatograms of AST and AST-OH after treatment with 3 % H₂O₂ or 0.5 M KOH. (cps, counts per second.)

Fig. S4. Phylogenetic relationships of the *Burkholderia gladioli* GSRB05 strain isolated in the present study and related species. The phylogenetic tree of the 16S rRNA sequences was generated by the neighbour-joining method. The tree was tested for support by performing bootstrap resampling (1000 replicates). The bootstrap values are given at each branch; GenBank accession numbers of each sequence employed are in parentheses.

Fig. S5. LC-MS (top) and LC-MS-MS (bottom) chromatograms of AST in the positive-ion mode.

Fig. S6. (a) ¹H NMR, and (b) ¹³C NMR spectra of AST in D_2O . Deuterated methanol (CD₃OD) was added as a chemical shift reference for both NMR analyses.

Fig. S7. 2-D HMQC NMR spectrum of AST in D_2O .

Fig. S8. 2-D 1 H $^{-1}$ H COSY NMR spectrum of AST in D₂O.

Environ. Chem. **2016** doi:10.1071/EN14247_AC

Fig. S9. 2-D HMBC NMR spectrum of AST in D₂O.

Fig. S10. HPLC-ICP-MS chromatogram of the crude AST sample containing AST-OH. (a) Standard mixture containing As^{III}, As^V, MMA and DMA. (b) Crude AST sample containing AST-OH.

Fig. S11. LC-MS-MS chromatograms for AST and AST-OH at each multiple reaction monitoring (MRM) transition and daughter scan (Fig. S8). Chromatograms A, B, C and D represent the MRM transitions $226 \rightarrow 102$, $226 \rightarrow 162$, $226 \rightarrow 180$ and $226 \rightarrow 208$ respectively; the daughter scan of 226 for AST is shown in E. For AST-OH, chromatograms F, G, H and I represent the MRM transitions $228 \rightarrow 102$, $228 \rightarrow 164$, $228 \rightarrow 182$ and $228 \rightarrow 210$ respectively; the daughter scan of 228 is shown in J.