Supplementary material

Hydroxyl radical formation from bacteria-assisted Fenton chemistry at neutral pH under environmentally relevant conditions

Jarod N. Grossman^A and Tara F. Kahan^{A,B}

^ADepartment of Chemistry, Syracuse University, 1-014 Center for Science and Technology,

Syracuse University, Syracuse, NY 13244, USA.

^BCorresponding author. Email: tfkahan@syr.edu

Growth medium preparation

Medium components were dissolved in deionised water, placed in an autoclavable container and autoclaved for 15 to 20 min at 121 °C. The medium was then transferred to sterile screw-cap tubes and stored in a refrigerator.

Growth medium composition

In deionised water:

- 1 mM lactic acid
- 2.45 g L^{-1} NaH₂PO₄·H₂O
- 4.58 g L⁻¹ Na₂HPO₄
- 0.5 g L⁻¹ NH₄Cl
- 0.15 g L⁻¹ KCl
- 0.075 g L^{-1} CaCl₂·H₂O
- 1 mL per 100 mL Wolfe's trace minerals solution

In de-ionised water: 0.5 g L⁻¹ EDTA, 3.0 g L⁻¹ MgSO₄·7H₂O, 0.5 g L⁻¹ MnSO₄·H₂O, 1.0 g L⁻¹ NaCl, 0.1 g L⁻¹ FeSO₄·7H₂O, 0.1 g L⁻¹ Co(NO₃)₂·6H₂O, 0.1 g L⁻¹ CaCl₂ (anhydrous), 0.1 g L⁻¹ ZnSO₄·7H₂O, 0.01 g L⁻¹ CuSO₄·5H₂O, 0.01 g L⁻¹ AlK(SO₄)₂ (anhydrous), 0.01 g L⁻¹ H₃BO₃, 0.01 g L⁻¹ Na₂MoO₄·2H₂O, 0.001 g L⁻¹ Na₂SeO₃ (anhydrous), 0.01 g L⁻¹ Na₂WO₄·2H₂O, 0.02 g L⁻¹ NiCl₂·6H₂O.

OH' quantification

Hydroxyl radicals (OH[•]) react with benzoic acid at near-diffusion-limited rates to produce salicylic acid (SA), 3-hydroxybenzoic acid (3-HBA) and 4-hydroxybenzoic acid (4-HBA).^[1] We have measured a

product branching ratio of SA : 3-HBA : 4-HBA = 1 : 2 : 1.^[2] Salicylic acid can be detected by fluorescence spectroscopy; 3-HBA and 4-HBA do not fluoresce.

Hydroxyl radical production rates were measured by taking fluorescence readings over set time intervals and monitoring SA emission intensity at 407 nm (with 300-nm excitation). To obtain OH[•] production rates, we multiplied the measured SA formation rate by 4 to account for all three reactions OH[•] undergoes with BA (because 3-HBA and 4-HBA are not detected by our fluorescence measurements).^[2]

We used BA concentrations of 7.5×10^{-4} M in all Fenton experiments in the present study. At this concentration, observed OH[•] production rates are insensitive to BA concentration when OH[•] is generated from H₂O₂ photolysis, which is much faster than OH[•] generation via Fenton chemistry under our experimental conditions.^[2] As further confirmation that SA production is insensitive to BA concentration under our experimental conditions, we measured OH[•] production rates from Fenton chemistry in the presence of 100 μ M Fe^{III}, 2 × 10⁻⁴ M H₂O₂ and 2.5 × 10⁻³ M BA. At this higher BA concentration, the observed OH[•] production rate was (8.6 ± 0.4) × 10⁻¹² M s⁻¹, which is the same within error as the rate measured in experiments using 7.5 × 10⁻⁴ M BA ((8.4 ± 0.2) × 10⁻¹² M s⁻¹).

Under our experimental conditions, lactic acid concentrations are higher than BA concentrations (1.0 $\times 10^{-3}$ and 7.5×10^{-4} M respectively). Benzoic acid is much more reactive towards OH[•] than is lactic acid (with rate constants of 5.9×10^9 and 2.0×10^6 M⁻¹ s⁻¹ respectively), so we expect OH[•] to react almost quantitatively with BA even in the presence of lactic acid.^[3] To ensure that this was the case in our experiments, we measured OH[•] production rates from dark Fenton chemistry (with iron in the form of Fe^{III}) in aqueous solution in the presence and absence of 1 mM lactic acid. Measured rates were (8.7 ± 1.0) $\times 10^{-12}$ and (8.4 ± 0.2) $\times 10^{-12}$ M s⁻¹ respectively, which leads us to conclude that lactic acid is not a significant OH[•] sink in our experiments.

Fig. S1. Effect of Fe^{II} concentration on the detector response to luminol phosphorescence in sterile medium. The slope is 10204 ± 251 counts μM^{-1} with an R^2 value of 0.99.

Fig. S2. Fe^{II} oxidation over time in sterile medium at a pH 7 in the absence of hydrogen peroxide and SO.

Fig. S3. Effect of H_2O_2 concentration on OH[•] production rates from Fenton chemistry with iron in the form of Fe^{III} under benchmark conditions in (a) water, and (b) sterile medium. Error bars represent the standard deviation about the mean of three trials. Error bars for 0 M H_2O_2 indicate our limit of detection for OH[•] production.

References

[1] G. W. Klein, K. Bhatia, V. Madhavan, R. H. Schuler, Reaction of hydroxyl radicals with benzoic acid. Isomer distribution in the radical intermediates. *J. Phys. Chem.* **1975**, *79*, 1767. <u>doi:10.1021/j100584a005</u>

[2] J. N. Grossman, A. P. Stern, M. L. Kirich, T. F. Kahan, Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous–organic phases. *Atmos. Environ.* **2016**, *128*, 158. <u>doi:10.1016/j.atmosenv.2015.12.049</u>

[3] M. Anbar, P. Neta, A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds in aqueous solution. *Int. J. Appl. Radiat. Isot.* 1967, *18*, 493. doi:10.1016/0020-708X(67)90115-9