10.1071/EN18056_AC

©CSIRO 2018

Environmental Chemistry 2018, 15(7), 450-462

Supplementary Material

Aging of silver nanocolloids in sunlight: particle size has a major influence

S. Motellier^{1*}, N. Pelissier¹, J.-G. Mattei^{1,2}

¹University Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, DRT/LITEN/DTNM/SEN/L2N, Laboratory of Nano-characterization and Nano-safety, 17 Avenue des Martyrs, F-38054 Grenoble, France.

²Present address: CIMAP, CEA-CNRS-ENSICAEN-Université de Caen, BP 5133, 14070 Caen Cedex 5, France

*Corresponding author. Tel: +33 4 38783114 ; Fax: +33 438785134 *E-mail address:* Sylvie.motellier@cea.fr

Table S1: AF4 method			
Detector flow (mL min ⁻¹)	1		
Injection flow (mL min ⁻¹)	0.2		
Focus flow (L min ⁻¹)	0.5		
Injection time (min)	5		
Elution	Constant cross flow 1mL min ⁻¹ during 1 min,		
	then exponential crossflow decrease to 0.1 mL min ⁻¹ for 20 min		

Table S2: ICP-MS experimental conditions			
RF power (W)	1550		
Plasma gas (Ar) flow rate (L min ⁻¹)	15		
Carrier gas (Ar) flow rate (L min ⁻¹)	1.15		
Sampling depth (mm)	7.5		
Integration time / mass (s)	1		

	Concentration	iviedium	рн
Aging	~20 mg L ⁻¹	Water/citrate stabilizer	7.9 +/- 0.6
UV/Vis	~4 mg L ⁻¹	UP water	6.5 +/- 0.5
DLS	~4 mg L ⁻¹	1 mM NaNO₃	8.0 +/- 0.5
AF4-MALS-ICP-MS	~1 mg L ⁻¹	NaOH (eluent)	10.0 +/- 0.2
TEM	~20 mg L ⁻¹	Water/citrate stabilizer	7.9 +/- 0.6

Figure S1: Evolution of the hydrodynamic diameter distribution (DLS, intensity based) of the three populations Ag AL 20nm, AG AL 60nm, and Ag AL 100nm during the aging process. Aging process in QSUN (sunlight, 40°C). Dilution factor: 5 in 1 mM NaNO_{3.} pH = 8.0 ± 0.5 . The suspensions were vortexed for homogenization and sonicated for 1 min to re-disperse the precipitate when necessary (Ag AL 100nm). Repeatability was poor in some instances (particularly, the smallest population was not present in all the replicates) and the choice was made to display the curves showing a maximum number of peaks.

Figure S2: Evolution of the fractograms of the silver suspensions with exposure time (sunlight, 40°C). (a): on-line ICP-MS signal for ¹⁰⁷Ag and (b): on-line MALS signal (90° detector). Eluent NaOH pH = 10. AF4 method in Table SI.1. Dilution factor: 20 in UP water.

Figure S3: EDS mapping and spectra of some relevant changes in the particle morphology/size/aggregation after aging.