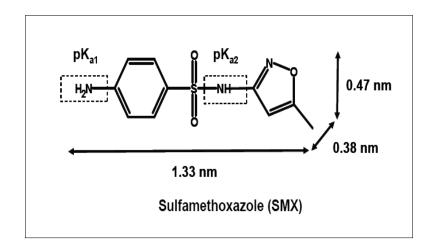
10.1071/EN18132_AC

©CSIRO 2019

Environmental Chemistry 2019, 16(1), 68-79

Supplementary Material


Simultaneous adsorption of trace sulfamethoxazole and hexavalent chromium by biochar/MgAl layered double hydroxide composites

Guowan Li,^A Zhujian Huang,^A Chengyu Chen,^A Hongcan Cui,^A Yijuan Su,^{A,B} Yang Yang^C and Lihua Cui^{A,D}

^ACollege of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.

^BKey Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.

^CCollege of Life Science and Technology, Jinan University, Guangzhou 510632, China. ^DCorresponding author. Email: lihcui@scau.edu.cn

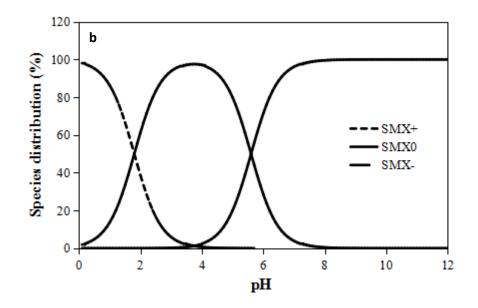


Fig. S1. Molecular structure of sulfamethoxazole (SMX) (a) and solution speciation of SMX as a function of pH (b).

The formula of SMX is C₁₀H₁₁N₃O₃S; molecular weight is 235.28 g mol⁻¹; water solubility is 0.37 g L⁻¹, the n-octanol-water partition coefficient $\log K_{ow}$ is 0.89 and the pK_a values are 1.8 and 5.6 (Gao and Pedersen 2005; Pérez et al. 2005; Ji et al. 2011).

References:

Gao J, Pedersen J A (2005). Adsorption of sulfonamide antimicrobial agents to clay minerals. *Environmental Science & Technology* **39**, 9509-9516.

Ji L, Wan Y, Zheng S, Zhu D (2011). Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption. *Environmental Science & Technology* **45**, 5580-5586.

Pérez S, Eichhorn P, Aga DS (2005). Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. *Environmental Toxicology & Chemistry* **24**, 1361-1367.