10.1071/EN19064_AC

©CSIRO 2019

Environmental Chemistry 2019, 16(6), 391-400

Supplementary Material

Isotopic labelling for sensitive detection of nanoparticle uptake and translocation in plants from hydroponic medium and soil

Jayashree Nath,^{A,C} Ishai Dror,^A Premysl Landa,^B Katerina Motkova,^B Tomas Vanek^B and Brian Berkowitz^A

^ADepartment of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel. ^BLaboratory of Plant Biotechnologies, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Praha 6 - Lysolaje, Czech Republic. ^CCorresponding author. Email: jayashree.nath@weizmann.ac.il

Characteristics of soil used for plant cultivation

Soil from the Weizmann Institute of Science, Rehovot, Israel was used for cultivation of tomato plants. The soil was characterized as loamy sand (Goykhman et al. 2018) according to standard procedures (Gavlak et al. 2005); the results are summarized in Table S1.

Table	S1
-------	-----------

Properties of soil from the Weizmann Institute of Science, Israel.

Properties	Methods	Results
Composition	Hydrometer method	$89\% \pm 3\%$ sand
		7% ± 4% silt
		$3\% \pm 1\%$ clay
pH	DDW	7.97 ± 0.01
	DDW+CaCl ₂	7.41 ± 0.02
Porosity	Saturated column method	0.39 ± 0.03
Organic matter (%)	Loss on ignition	$0.5\%\pm0.2\%$
CEC composition [meq/100g]	Na ⁺	0.27
	K ⁺	0.13
	Mg^{2+}	1.21
	Ca ²⁺	8.71
Total CEC [meq/100g]	Ammonium replacement	10.32
	method	
Soil carbonates (CO ₃ -C%)	Gravimetric method	0.14 ± 0.02
Dissolved Organic Carbon [ppm]	UV at 254 nm	± 0.06

Possible toxicity of components in ⁶⁵Cu-NP suspension to plants

Due to high toxicity of ⁶⁵Cu-NPs on growth of some plants, the concentration of boron in freshly synthesized ⁶⁵Cu-NP suspensions was measured with ICP-MS. Sodium borohydride is a prime ingredient in the process of synthesis of ⁶⁵Cu-NP. The concentration of PEI (another prime ingredient in synthesis of ⁶⁵Cu-NP) was not possible to estimate quantitatively. Also, according to the literature, PEI must not be present in original form after synthesis of a ⁶⁵Cu-NP suspension. PEI is the binding agent that stabilizes ⁶⁵Cu-NP in the suspension and is not present as a free compound in the suspension. Fig. S1 shows the concentration of boron in suspensions of ⁶⁵Cu-NP at different concentrations.

Fig. S1. Concentration of boron in suspensions of synthesized 65 Cu-NPs, at concentrations of 100, 500, 1000 and 2000 µg L⁻¹, analyzed with ICP-MS.

EDS spectra analysis

Fig. S2 shows the EDS spectrum for the ¹⁰⁷Ag-NPs, ⁶⁵Cu-NPs and ⁷⁰ZnO-NPs observed with TEM analysis in remnant media (25% Hoagland's medium) after harvesting the plants, and confirms the presence of the respective metals. Fig. S3 shows the presence of Ag in tomato plant root tissue matrix, along with other biogenic background elements. The peak of Ag is notably smaller than other elements in the spectrum, as the Ag was identified as a tiny particle amongst all other elements present in abundance in the complex plant matrix.

Fig. S2. EDS spectra showing presence of Ag, Cu and Zn in the spotted particles of ¹⁰⁷Ag-NPs, ⁶⁵Cu-NPs and ⁷⁰ZnO-NPs found scattered in remnant hydroponic medium.

Fig. S3. EDS spectrum showing presence of Ag in tomato plant root tissue matrix, along with other more abundant biogenic background elements.

Total metal concentration in plants under different conditions

Uptake of NPs/metals in different plants under hydroponic cultivation and in soil cultivation is discussed in the main manuscript. Figures 1 and 4 shown in the main manuscript enable comparison of the total metal concentration in different plants and different parts of plants. However, for reference to the exact concentrations of the respective metals/isotopes found in the plants in these studies, the data are shown in Tables S2 and S3.

Table S2. Total concentration of respective metal isotopes (mg kg⁻¹ biomass) in shoots and roots of three different plants exposed to isotopically-labeled nanoparticles under hydroponic conditions.

Plants	Sample	Total concentration of respective metals $(in mg kg^{-1})$			
		¹⁰⁷ Ag	⁶⁵ Cu	⁷⁰ Zn	
Arabidopsis	Shoots- control	0.269±0.071	0.982±0.150	2.236±0.364	
thaliana	Shoots treated with NPs	0.952±0.345	15.609±0.833	1279.320±63.847	
	Roots- control	0.281±0.063	2.548±0.321	3.651±0.223	
	Roots treated with NPs	1705.656±124.35	6539.853±365.291	3858.242±165.383	
Solanum	Shoots- control	0.295±0.056	1.215±0.256	2.329±0.867	
<i>lycopersicum</i> (tomato)	Shoots treated with NPs	1.927±0.182	11.381±1.534	194.993±41.280	
	Roots- control	0.437±0.021	3.410±0.492	4.479 ±0.346	
	Roots treated with NPs	348.228±34.058	4944.278±526.447	1166.906±104.341	
Phragmites	Shoots- control	0.240 ± 0.061	1.996±0.215	2.926 ± 0.824	
<i>australis</i> (common	Shoots treated with NPs	2.797±0.557	9.643±1.524	182.207±24.583	
reed)	Roots- control	0.324±0.092	3.628±0.356	3.803±0.532	
	Roots treated with NPs	432.099±23.985	2835.520±16.229	1058.041±27.406	

The data represent mean and standard error (n = 3).

Table S3. Concentration of metals/isotopes from respective nanoparticles in different parts of tomato plants and soil (in mg kg⁻¹ of biomass) analyzed with ICP-MS after acid digestion. Tomato plants were grown in soil under greenhouse conditions. Soil Layer A represents the top layer of soil (~0-2.8 cm), Soil Layer B represents the middle layer of soil (~2.8-5.6 cm), Soil Layer C represents the bottom layer of soil (~5.6-8.5 cm). The data represent mean and standard error (n = 4 for control; n = 6 for plants exposed to NPs).

Part of plant	Sample	Conc. of ¹⁰⁷ Ag	Conc. of ⁶⁵ Cu	Conc. of ⁷⁰ Zn
_	_	$(mg kg^{-1})$	$(mg kg^{-1})$	$(mg kg^{-1})$
Roots	Control	1.26±0.12	10.9±0.7	7.11±0.71
	Treated	5.76±0.29	24.9±0.5	15.28±0.82
	with NPs			
Stems	Control	0.82 ± 0.07	1.08 ± 0.71	5.06 ± 0.82
	Treated	0.96±0.15	1.36 ± 0.45	7.78±0.69
	with NPs			
Leaves	Control	0.84±0.13	2.78 ± 0.40	5.01±0.44
	Treated	0.86 ± 0.06	3.54±0.41	$18.94{\pm}1.02$
	with NPs			
Fruits	Control	0.88±0.09	0.84±0.12	4.94±0.72
	Treated	1.26±0.22	1.17±0.29	5.58 ± 0.56
	with NPs			
Soil Layer A	Control	0.04 ± 0.02	3.60±0.84	2.65 ± 0.82
	Treated	1.29±0.08	4.39±0.42	6.71±0.78
	with NPs			
Soil Layer B	Control	0.04 ± 0.02	2.22±0.63	2.76±0.53
	Treated	0.15±0.01	2.51±0.42	4.18±0.81
	with NPs			
Soil Layer C	Control	0.04±0.01	2.34±0.75	2.74±0.42
-	Treated	0.06±0.02	1.98±0.89	2.99±0.35
	with NPs			

Analysis of NPs suspended in plant media

The hydrodynamic diameter (average size) and polydispersity index (PDI) of the NPs suspended in 25% Hoagland's media and 50% Murashige-Skoog media were determined by dynamic light scattering (DLS) at 25 °C in a Malvern Zetasizer Nano ZSP. The NPs suspended in plant media

were analyzed for changes at the start of each experiment (before exposure to plants) and at the end (after exposure to plants), where samples were filtered with Millex-GV PVDF filter unit, size 4.5 μ m, before analysis. Overall surface charge and stability of the NPs suspended in the plant media were also estimated through ζ -potential measurements in Malvern, Zetasizer Nano ZSP. Changes in pH were also recorded initially and at the end of experiments. The results of both types of media exposed to different plants are shown in Tables S4 and S5, respectively.

Table. S4. The average size and ζ -potential measurements of NPs suspended in 25% Hoagland's medium at the beginning of experiments (before exposure to *Arabidopsis* plants) and at the end of experiments (after exposure to *Arabidopsis* plants). The data represent mean and standard error (all measurements were done in triplicate).

Sample		DLS		ζ-potential	pН
NPs suspended in Hoagland's media		Average size (nm)	PDI		
Control	Initial	256.78 ± 118.9	1.0	-15.77 ± 0.4	6.229
	End of experiment	275.45 ± 12.63	0.56	-15.23 ± 1.09	6.909
¹⁰⁷ Ag-NP	Initial	167.9 ± 98.9	0.46	-11.4 ± 0.9	6.507
	End of experiment	192.2 ± 14.5	0.33	-12.2 ± 1.08	6.950
⁶⁵ Cu-NP	Initial	172.9 ± 109.6	0.59	-5.3 ± 0.4	6.323
	End of experiment	612.1 ± 78.4	0.65	-13.4 ± 0.9	6.566
⁷⁰ ZnO-NP	Initial	141.5 ± 80.05	1.00	-16.1 ± 0.5	6.295
	End of experiment	452.2 ± 128.33	0.53	-11.03 ± 2.32	6.813

Table. S5. The average size and ζ -potential measurements of NPs suspended in 50% Murashige-Skoog medium at the beginning of experiments (before exposure to common reed plants) and at the end of experiments (after exposure to common reed plants). The data represent mean and standard error (all measurements were done in triplicate).

Sample		DLS		ζ-potential	pН
NPs suspended in Murashige-Skoog media		Average size (nm)	PDI		
Control	Initial	387.33 ± 89.4	0.42	-3.85 ± 0.98	5.785
	End of experiment	273.35 ± 11.24	0.39	-4.47 ± 2.3	3.418

¹⁰⁷ Ag-NP	Initial	270.15 ± 70.64	1.0	-5.77 ± 3.4	5.997
	End of experiment	166.96 ± 10.43	0.47	-6.05 ± 0.66	4.119
⁶⁵ Cu-NP	Initial	301.33 ± 58.2	0.58	-6.87 ± 2.27	5.838
	End of experiment	196.03 ± 43.22	0.61	-4.65 ± 0.74	3.159
⁷⁰ ZnO-NP	Initial	212.4 ± 10.9	0.26	-10.8 ± 0.4	6.154
	End of experiment	195.3 ± 59.0	0.88	-4.27 ± 0.38	3.632

References

- Gavlak R, Horneck D, Miller RO (2005). Soil Plant and Water Reference Methods for the Western 305 Region, Western Coordinating Committee on Nutrient Management, USA. Goykhman N, Dror I, Berkowitz B (2018). Transport of oxaliplatin in water-saturated natural
- soil. Chemosphere 208, 829-837.