Supplementary Material

Formation of marine secondary aerosols in the Southern Ocean, Antarctica

Shanshan Wang, A,B Jinpei Yan, A,B,C Qi Lin, A,B Miming Zhang, A,B Suqing Xu, A,B Shuhui Zhao A,B and Meina Ruan A,B

^AKey Laboratory of Global Change and Marine Atmospheric Chemistry, Ministry of Natural Resources, Xiamen 361005, China.

^BThird Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.

^CCorresponding author. Email: jpyan@tio.org.cn

1. Figures

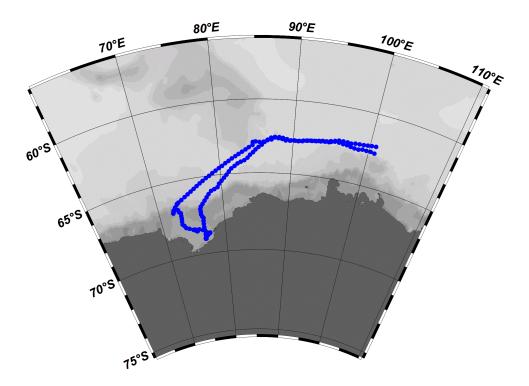


Fig.S1 Route map during the monitoring period.

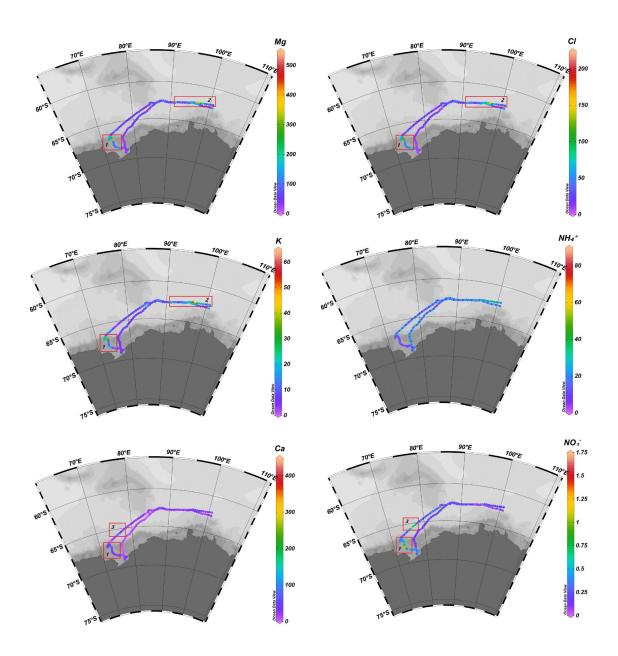


Fig.S2 Spatial distribution of mass concentrations of Mg^{2^+} , Ca^{2^+} , Cl^- , NH_4^+ , K^+ , and NO_3^- in marine aerosols during the cruise.

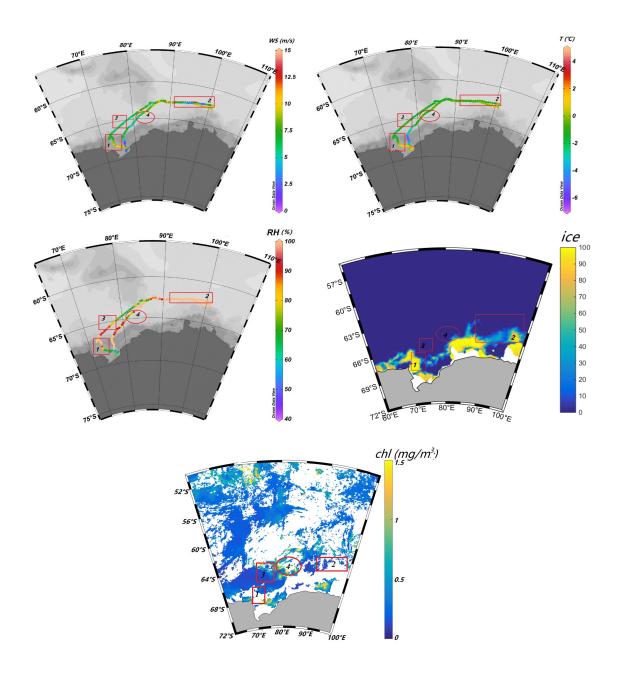


Fig.S3 Spatial distribution of WS, T, RH, ice and chl-a from Dec.24, 2017 to Jan. 8, 2018 in Prydz

Bay, Antarctica.

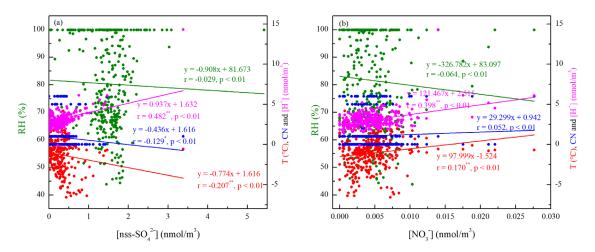


Fig.S4 Relationships between [nss-SO₄²⁻]/[NO₃⁻] and other parameters including RH, T, CN, [H⁺].

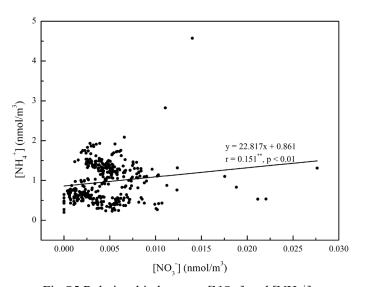


Fig.S5 Relationship between $[NO_3^-]$ and $[NH_4^+]$.

2. Tables

Table S1 Correlations between water soluble ions in marine aerosols with the meteorology parameters

Parameters												
	Na ⁺	$\mathrm{Mg}^{2^{+}}$	Cl ⁻	K^{+}	SO ₄ ² -	NH4 ⁺	NO ₃ -	MSA ⁻				
T	0.095	0.103	0.099	0.065	184**	136*	.170**	-0.04				
RH	.248**	.250**	.266**	.259**	.253**	.134*	-0.064	.181**				
WS	.399**	.405**	.432**	.337**	0.047	-0.03	-0.022	.242**				
visibility	311**	315**	321**	316**	145**	113*	0.101	-0.081				
CN	.236**	.245**	.239**	.264**	0.064	0.093	0.052	0.064				

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Table S2 Correlations between $[MSA^-]_p$ and other ions in marine aerosols

	[Na ⁺]	$[Mg^{2+}]$	$[Ca^{2+}]$	$[K^+]$	$[NH4^{+}]$	[SO ₄ ² -] _p	[NO ₃ -] _p	[Cl ⁻]
Pearson Correlation	0.153**	0.133*	0.043	0.108*	0.306**	0.620**	-0.033	0.133*
Sig. (2-tailed)	0.004	0.011	0.437	0.042	0	0	0.538	0.011
N	359	359	332	359	359	359	359	359

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).