Supplementary Material

Insights into interactions of chlorine-based cleaning products with indoor relevant surfaces

Michael R. Alves^A, Cholaphan Deeleepojananan^A, Victor W. Or^A, Izaac Sit^B and Vicki H. Grassian^{A,*}

^ADepartment of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA

^BDepartment of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA

*Correspondence to: Email: <u>vhgrassian@ucsd.edu</u>

Supplemental Information:

Insights into Interactions of Chlorine-Based

Cleaning Products with Indoor Relevant Surfaces

Michael R. Alves, Cholaphan Deeleepojananan, Victor W. Or, Izaac Sit and Vicki H. Grassian

¹Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093

Figure S1. (a) XPS of SiO₂ sample exposed to gas-phase HOCl under dried conditions and then analyzed several weeks later with XPS. There are no peaks evident in the Cl 2p region. (b) XPS of TiO₂ sample exposed to gas-phase HOCl under dried conditions and then analyzed several weeks later with XPS. Peaks due to chloride Cl $2p_{3/2}$ and $2p_{1/2}$ near 198 and 200 eV, respectively.