Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

On-site determination of bisphenol A in river water by a novel solid-state electrochemiluminescence quenching sensor

Xiaoying Wang A C , Yijie Wang A , Meng Jiang A , Yanqun Shan A and Xiaobing Wang B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

B Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.

C Corresponding author. Email: wxy@seu.edu.cn

Environmental Chemistry 14(2) 115-122 https://doi.org/10.1071/EN16137
Submitted: 30 July 2016  Accepted: 17 November 2016   Published: 14 December 2016

Environmental context. Bisphenol A is an endocrine disruptor, which may migrate and transfer to the environment where it presents a potential risk to the health of humans and animals. Herein, we demonstrate that electrospun nanofibers could be used to develop a highly efficient solid-state quenching sensor for on-site determination of bisphenol A in river water samples. The strategy has great potential for routine environmental analyses.

Abstract. A novel solid-state electrochemiluminescence (ECL) quenching sensor based on luminescent composite nanofibres for detection of bisphenol A (BPA) has been designed. Luminescent composite nanofibres of ruthenium(ii) tris(bipyridine) (Ru(bpy)32+)-doped core–shell Cu@Au alloy nanoparticles (Ru/Cu@Au) mixed with nylon 6 (PA6)–amino-functionalised multi-walled carbon nanotubes (MWCNTs), Ru/Cu@Au-MWCNTs-PA6, were successfully fabricated by a one-step electrospinning technique. The Ru/Cu@Au-MWCNTs-PA6 nanofibres, with a unique 3D nanostructure, large specific surface area and double Ru(bpy)32+-ECL signal amplification, exhibited excellent ECL photoelectric behaviours on a glassy carbon electrode. As a solid-state ECL sensor, the Ru/Cu@Au-MWCNTs-PA6 nanofibres can sensitively detect low concentrations of BPA by monitoring the BPA-dependent ECL intensity change. The detection limit for BPA is 10 pM, which is comparable or better than that in the reported assays. The sensor was successfully applied to on-site determination of BPA in river water samples obtained from eight different sampling sites with good recovery, ranging from 97.8 to 103.4 %. The solid-state ECL sensor displayed wide-range linearity, high sensitivity and good stability, and has great potential in the field of environmental analyses.


References

[1]  F. S. vom Saal, S. C. Nagel, B. L. Coe, B. M. Angle, J. A. Taylor, The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol. Cell. Endocrinol. 2012, 354, 74.
The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Cru70%3D&md5=00cb36df1380d9ebecfd860dd58c86e8CAS |

[2]  T. Geens, D. Aerts, C. Berthot, J. P. Bourguignon, L. Goeyens, P. Lecomte, G. Maghuin-Rogister, A. M. Pironnet, L. Pussemier, M. L. Scippo, J. Van Loco, A. Covaci, A review of dietary and non-dietary exposure to bisphenol-A. Food Chem. Toxicol. 2012, 50, 3725.
A review of dietary and non-dietary exposure to bisphenol-A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2gsLfI&md5=752dcc5bb059c46ba1e2dad2fe568b80CAS |

[3]  S. Singh, S. S.-L. Li, Bisphenol A and phthalates exhibit similar toxicogenomics and health effects. Gene 2012, 494, 85.
Bisphenol A and phthalates exhibit similar toxicogenomics and health effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCrtrc%3D&md5=676ba14f918d9f2e79576a8be05d4062CAS |

[4]  K. V. Ragavan, N. K. Rastogi, M. S. Thakur, Sensors and biosensors for analysis of bisphenol-A. Trends Analyt. Chem. 2013, 52, 248.
Sensors and biosensors for analysis of bisphenol-A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CrtbnK&md5=38139447b1cb772f66905513fefa1f32CAS |

[5]  W. Zhan, F. Wei, G. Xu, Z. Cai, S. Du, X. Zhou, F. Li, Q. Hu, Highly selective stir bar coated with dummy molecularly imprinted polymers for trace analysis of bisphenol A in milk. J. Sep. Sci. 2012, 35, 1036.
Highly selective stir bar coated with dummy molecularly imprinted polymers for trace analysis of bisphenol A in milk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFCiur0%3D&md5=75def672124ab3e208fa953bef3b8072CAS |

[6]  H. Sambe, K. Hoshina, K. Hosoya, J. Haginaka, Direct injection analysis of bisphenol A in serum by combination of isotope imprinting with liquid chromatography-mass spectrometry. Analyst 2005, 130, 38.
Direct injection analysis of bisphenol A in serum by combination of isotope imprinting with liquid chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFans73O&md5=dd5a2e30d0e84358f1c2494c476f6532CAS |

[7]  J. Zhang, G. M. Cooke, I. H. Curran, C. G. Goodyer, X. L. Cao, GC-MS analysis of bisphenol A in human placental and fetal liver samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011, 879, 209.
GC-MS analysis of bisphenol A in human placental and fetal liver samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVaksw%3D%3D&md5=4d9c9d7c5528c84c49b703321d6d36d3CAS |

[8]  A. Ballesteros-Gómez, S. Rubio, D. Pérez-Bendito, Potential of supramolecular solvents for the extraction of contaminants in liquid foods. J. Chromatogr. A 2009, 1216, 530.
Potential of supramolecular solvents for the extraction of contaminants in liquid foods.Crossref | GoogleScholarGoogle Scholar |

[9]  X. Chen, C. Wang, X. Tan, J. Wang, Determination of bisphenol A in water via inhibition of silver nanoparticles-enhanced chemiluminescence. Anal. Chim. Acta 2011, 689, 92.
Determination of bisphenol A in water via inhibition of silver nanoparticles-enhanced chemiluminescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Ghu7o%3D&md5=268c4471023e991abeb4c74fba67bf5cCAS |

[10]  M. P. Zhao, Y. Z. Li, Z. Q. Guo, X. X. Zhang, W. B. Chang, A new competitive enzyme-linked immunosorbent assay (ELISA) for determination of estrogenic bisphenols. Talanta 2002, 57, 1205.
| 1:CAS:528:DC%2BD38XkvFKisLg%3D&md5=4944d43c44abe43c06d4c788c768a464CAS |

[11]  K. V. Ragavan, L. S. Selvakumar, M. S. Thakur, Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A. Chem. Commun. 2013, 49, 5960.
Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFWns7k%3D&md5=9efb3ff54c06292ea1c99cccc2fa4291CAS |

[12]  E. Chung, J. Jeon, J. Yu, C. Lee, J. Choo, Surface-enhanced Raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A. Biosens. Bioelectron. 2015, 64, 560.
Surface-enhanced Raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1yhu7%2FN&md5=961e3111f18a7fef287518ba08fba527CAS |

[13]  D. Pan, Y. Gu, H. Lan, Y. Sun, H. Gao, Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A. Anal. Chim. Acta 2015, 853, 297.
Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFWisrnK&md5=7fbfa0f5baa2c0c87b463125c1ec8a47CAS |

[14]  N. Huang, M. Liu, H. Li, Y. Zhang, S. Yao, Synergetic signal amplification based on electrochemical reduced graphene oxide-ferrocene derivative hybrid and gold nanoparticles as an ultra- sensitive detection platform for bisphenol A. Anal. Chim. Acta 2015, 853, 249.
Synergetic signal amplification based on electrochemical reduced graphene oxide-ferrocene derivative hybrid and gold nanoparticles as an ultra- sensitive detection platform for bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOisr7E&md5=311f30c4b49b9d41045aec763b6e36bdCAS |

[15]  X. H. Jiang, W. J. Ding, C. L. Luan, Molecularly imprinted polymers for the selective determination of trace bisphenol A in river water by electrochemiluminescence. Can. J. Chem. 2013, 91, 656.
Molecularly imprinted polymers for the selective determination of trace bisphenol A in river water by electrochemiluminescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpt1yqsbc%3D&md5=eb301278d9aca644c48022a948b73644CAS |

[16]  W. J. Miao, Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 2008, 108, 2506.
Electrogenerated chemiluminescence and its biorelated applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlCqurY%3D&md5=3755fdff9c0fae1e5ee8253f1638aadcCAS |

[17]  L. B. Li, B. Yu, X. P. Zhang, T. Y. You, A novel electrochemiluminescence sensor based on Ru(bpy)32+/N – doped carbon nanodots system for the detection of bisphenol A. Anal. Chim. Acta 2015, 895, 104.
A novel electrochemiluminescence sensor based on Ru(bpy)32+/N – doped carbon nanodots system for the detection of bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsV2ntrfJ&md5=31e84f84499c924b8e4a981af28962feCAS |

[18]  S. Y. Deng, H. X. Ju, Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 2013, 138, 43.
Electrogenerated chemiluminescence of nanomaterials for bioanalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslequ7jP&md5=7f541cf4a79cca798e3c1bebf02a5e83CAS |

[19]  L. C. Chen, X. T. Zeng, A. R. Ferhan, Y. Chi, D.-H. Kim, G. Chen, Signal-on electrochemiluminescent aptasensors based on target controlled permeable films. Chem. Commun. 2015, 51, 1035.
Signal-on electrochemiluminescent aptasensors based on target controlled permeable films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2gsL7E&md5=bf9b31b63c01b30fc8aabb5401874af2CAS |

[20]  W. Zhan, A. J. Bard, Electrogenerated chemiluminescence. 83. Immunoassay of human C-reactive protein by using Ru(bpy)32+-encapsulated liposomes as labels. Anal. Chem. 2007, 79, 459.
Electrogenerated chemiluminescence. 83. Immunoassay of human C-reactive protein by using Ru(bpy)32+-encapsulated liposomes as labels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12itb7M&md5=7f7f1fd550b27bcb68419bde2ec0e415CAS |

[21]  H. Wei, E. K. Wang, Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium. Trends Analyt. Chem. 2008, 27, 447.
Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVenur8%3D&md5=22afb66fa1f5c3e0b7c2067d3a066ae5CAS |

[22]  C. H. Lyons, E. D. Abbas, J. K. Lee, M. F. Rubner, Solid-state light-emitting devices based on the trischelated ruthenium(II) complex. 1. Thin film blends with poly(ethylene oxide). J. Am. Chem. Soc. 1998, 120, 12100.
Solid-state light-emitting devices based on the trischelated ruthenium(II) complex. 1. Thin film blends with poly(ethylene oxide).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntVKguro%3D&md5=a7e3f703bc7947dd21b7a1d252dfb4e0CAS |

[23]  X. P. Sun, Y. Du, L. X. Zhang, S. J. Dong, E. K. Wang, Luminescent supramolecular microstructures containing Ru(bpy)32+: solution-based self-assembly preparation and solid-state electrochemiluminescence detection application. Anal. Chem. 2007, 79, 2588.
Luminescent supramolecular microstructures containing Ru(bpy)32+: solution-based self-assembly preparation and solid-state electrochemiluminescence detection application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslOrsrc%3D&md5=bb2bb854e2c06958496a8de693cf62e3CAS |

[24]  Z. H. Guo, Y. Shen, M. K. Wang, F. Zhao, S. J. Dong, Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/tris(2,2′-bipyridyl)ruthenium(II) multilayer films on indium tin oxide electrodes. Anal. Chem. 2004, 76, 184.
Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/tris(2,2′-bipyridyl)ruthenium(II) multilayer films on indium tin oxide electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Wru7k%3D&md5=e9ef103ffbab453d1e5d5d65558b0d05CAS |

[25]  Y. F. Zhuang, D. M. Zhang, H. X. Ju, Sensitive determination of heroin based on electrogenerated chemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) immobilized in zeolite Y modified carbon paste electrode. Analyst 2005, 130, 534.
Sensitive determination of heroin based on electrogenerated chemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) immobilized in zeolite Y modified carbon paste electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlOlt7o%3D&md5=19f53c861cb184c4302d2cfc8025ad69CAS |

[26]  X. Y. Wang, X. Y. Zhang, P. G. He, Y. Z. Fang, Sensitive detection of p53 tumor suppressor gene using an enzyme-based solid-state electrochemiluminescence sensing platform. Biosens. Bioelectron. 2011, 26, 3608.
Sensitive detection of p53 tumor suppressor gene using an enzyme-based solid-state electrochemiluminescence sensing platform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFeisbw%3D&md5=009edac4d31e0d4ad338d5365e61bc23CAS |

[27]  C. S. Zhou, Z. Liu, J. Y. Dai, D. Xiao, Electrospun Ru(bpy)32+-doped nafion nanofibers for electrochemiluminescence sensing. Analyst 2010, 135, 1004.
Electrospun Ru(bpy)32+-doped nafion nanofibers for electrochemiluminescence sensing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1ChsLw%3D&md5=c9c2c4c2006a2573ce29648535792fbaCAS |

[28]  Z. Liu, C. S. Zhou, B. Z. Zheng, L. Qian, Y. Mo, F. L. Luo, Y. L. Shi, M. M. F. Choi, D. Xiao, In situ synthesis of gold nanoparticles on porous polyacrylonitrile nanofibers for sensing applications. Analyst 2011, 136, 4545.
In situ synthesis of gold nanoparticles on porous polyacrylonitrile nanofibers for sensing applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12itbvO&md5=3d31d8a3b30e2fa0921468a301f78cd0CAS |

[29]  X. Y. Wang, X. B. Wang, S. M. Gao, Y. Zheng, M. Tang, B. A. Chen, A solid-state electrochemiluminescence sensing platform for detection of catechol based on novel luminescent composite nanofibers. Talanta 2013, 107, 127.
A solid-state electrochemiluminescence sensing platform for detection of catechol based on novel luminescent composite nanofibers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Srur0%3D&md5=c37ada834c35f34b3bc90ad98a03f481CAS |

[30]  X. Y. Wang, Y. Yang, H. W. Gao, A novel solid-state electrochemiluminescence quenching sensor for detection of aniline based on luminescent composite nanofibers. J. Lumin. 2014, 156, 229.
A novel solid-state electrochemiluminescence quenching sensor for detection of aniline based on luminescent composite nanofibers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVaku7zL&md5=ec13b263a8a17517b682938523596897CAS |

[31]  S. Kapoor, R. Joshi, T. Mukherjee, Influence of I– anions on the formation and stabilization of copper nanoparticles. Chem. Phys. Lett. 2002, 354, 443.
Influence of I anions on the formation and stabilization of copper nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFCht7o%3D&md5=a34cd00abfaab8c95c34da7c3bc6e267CAS |

[32]  H. Cai, N. N. Zhu, Y. Jiang, P. G. He, Y. Z. Fang, Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Biosens. Bioelectron. 2003, 18, 1311.
Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVKjur0%3D&md5=d84b1ee7a9b50ebaca0840506e615fb1CAS |

[33]  D. Shan, B. Qian, S. N. Ding, W. Zhu, S. Cosnier, H. G. Xue, Enhanced solid-state electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) incorporated into electrospun nanofibrous mat. Anal. Chem. 2010, 82, 5892.
Enhanced solid-state electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium(II) incorporated into electrospun nanofibrous mat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGht70%3D&md5=4ec97809f2997543ca148e8881694debCAS |

[34]  W. J. Miao, J. P. Choi, A. J. Bard, Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisited – a new route involving TPrA•+ cation radicals. J. Am. Chem. Soc. 2002, 124, 14478.
Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisited – a new route involving TPrA•+ cation radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFWhtbg%3D&md5=262ad7378ed0a1848c6b75de67dbcadeCAS |

[35]  B. M. Huang, X. B. Zhou, Z. H. Xue, X. Q. Lu, Electrochemiluminescence quenching of tris(2,2′-bipyridyl)ruthenium. Trends Analyt. Chem. 2013, 51, 107.
Electrochemiluminescence quenching of tris(2,2′-bipyridyl)ruthenium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CqtLrO&md5=dfded36a043f5d8a152ef0441dcb736fCAS |

[36]  R. Sohrabi, N. Bahramifar, H. Javadian, S. Agarwal, V. K. Gupta, Pre-concentration of trace amount of bisphenol A in water samples by palm leaf ash and determination with high-performance liquid chromatography. Biomed. Chromatogr. 2016, 30, 1256.
Pre-concentration of trace amount of bisphenol A in water samples by palm leaf ash and determination with high-performance liquid chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjt12jtbs%3D&md5=dd260f728e78bafa931bfbd979eac5f5CAS |