
CSIRO PUBLISHINGResearch Paper

J. Rachou and S. Sauvé, Environ. Chem. 2008, 5, 150–160. doi:10.1071/EN07093 www.publish.csiro.au/journals/env

Evaluation of affinity constants of Cu, Cd, Ca and H for active
soil surfaces for a solid phase-controlled soil ligand model
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Environmental context. The speciation of metals in soils is controlled by the equilibrium between the solid
and aqueous phases and by several parameters such as pH and total metal concentrations. The integration of
affinity constants between several cations and active soil surfaces of different soils in the chemical equilibrium
modelling software MINEQL+ allows a good evaluation of the chemical speciation of the metals.

Abstract. A new approach, derived from the concept of the biotic ligand model, was used for the determination of the
affinity constants of Ca, Cu, Cd and H to the active surfaces of different kinds of soils. This approach allowed us to obtain
consistent data and to integrate these values in the chemical equilibrium modelling software MINEQL+ and eventually
into a solid phase-controlled soil ligand model. This could then very easily be transformed into a terrestrial biotic ligand
model by adding constants for biological components. We obtained the chemical speciation of the metals of interest by
integrating the initial characteristics of the soil (pH; cation exchange capacity, CEC; total metal concentrations in soil
extracts; ionic strength; and CO2 pressure). Comparison of the predicted and measured values of free Cu2+ is excellent
using soil-specific affinity constants as well as average values. The average affinity constants between the active soil
surfaces (S) and the target cations are log KCa–S = −0.84 (±0.01), log KCu–S = 5.3 (±0.1), log KCd–S = 4.4 (±0.2) and
log KH–S = 4.1 (±0.2). External soils have been used to validate the conceptual model and the results show a very good
correlation between the predicted and the measured free Cu (pCu) except for an acidic soil (pH < 5.2), highlighting the
importance of integrating Al into the model.

Additional keywords: contaminated soils, soil chemistry modelling, terrestrial biotic ligand model, TBLM.

Introduction

The determination of the chemical speciation of metals in nat-
ural matrices cannot be obtained by a single analytical method
but through several techniques. Generally, metals are divided
into two main fractions: the inert pool, assumed as the non-toxic
fraction, and the labile pool, assumed to be potentially toxic.
The labile pool is of great interest because of the demonstrated
relation between this value and the concentration in different
biological receptors: earthworms,[1] plant roots[2] or larvae.[3]
The labile pool is often called, by extension, the bioavailable
pool. However, the bioavailable fraction can differ from one
metal to another and from one receptor (different routes of
uptake) to another. Moreover, in natural matrices (soil solution,
fresh water, seawater, soils or sediments), any single analyti-
cal method will rarely give a complete picture of the chemical
speciation of metals. Several methods exist for the determina-
tion of the labile pools. Two groups can be clearly separated: the
electrochemical and the non-electrochemical methods.The latter
methods are principally based on a size or physical separation.
An alternative non-electrochemical approach is the technique
of diffusive gradients in thin films (DGT),[4–11] which can be
used in situ and takes into account kinetics and size parameters.
Using a different approach, electrochemical methods can also
be used. The most efficient remains the ion-selective electrode
for the determination of free metal activities[12–19] and a variety
of voltammetric methods that can measure pools of metals of

variable lability.[20–24] All these methods give information on
the most available fraction of the trace metals, assumed to be
the sum of the free ion, the inorganic complexes and the weak
organic complexes. The inert pool can be obtained by difference
between total and labile concentrations. The total metal concen-
trations in various matrices can be measured using a variety of
methods without significant differences. The most useful meth-
ods are atomic absorption spectrometry (AAS) and inductively
coupled plasma coupled to atomic emission spectrometry (ICP-
AES) or mass spectrometry (ICP-MS). It is well known now that
these total metal values are not representative of the toxicity of a
metal;[25,26] however, they remain the most often measured val-
ues and many environmental guidelines are still based on total
concentrations. It clearly appears that the complete analytical
determination of the speciation in a natural matrix is fastidious
but the resulting information is critical.

A feasible alternative to the analytical determination of
chemical species in water matrices is the use of chemical equi-
librium modelling software (e.g. WHAM, MINEQL+, FITEQL,
MINTEQ). Given the large number of studies done with water
matrices, we now have a precise knowledge of the affinity con-
stants of several metals with a variety of organic and inorganic
ligands. Limitations of such approaches include the quality of
the analytical input data, the accuracy of the stability constants
needed for natural organic matter and the appropriateness of the
model to the actual environmental system under study.[26] In
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aquatic systems, matrix characteristics (e.g. pH, organic matter,
presence of other cations) have a strong effect on the chemistry,
but this is relatively well integrated into the chemical equilib-
rium models and we observe acceptable correlations between
the measured and the predicted concentrations of the target
species,[19,23,27,28] but there are some observed discrepancies
noted for soils.[29] Several authors[30–32] describe qualitatively
the decreasing bioavailability (and toxicity) of a metal with
increasing pH or increasing calcium treatment. But can these
variations be quantified or predicted in soil systems as we can
in aquatic systems?

Several modelling programs allow the speciation of a target
metal in aquatic systems by integrating the principal character-
istics of the solution; this integration is much more difficult in
soil systems and parameter adjustments are often required.[33,34]
Our objective here is to use a simple chemical equilibrium model
to calculate the chemical speciation in a soil solution presuming
that the chemistry is inherently dominated by the omnipresent
solid phase. The chemical control given by the solid phase will
then be dependent on the sorption properties of the solid phase
and simple affinity constants for this soil ligand will be deter-
mined so as to be able to predict relative distribution of given
metals between the soil’s solid phase and the soil solution.

As mentioned previously, the solid phase controls soil solu-
tion concentrations via surface sorption reactions. Some sur-
face complexation models (SCMs) can evaluate the impact
of soil characteristics on the mobility and toxicity of trace
metals.[1] Many models are available: the Constant Capacitance
Model (CCM),[35] the Diffusive Layer Model (DLM),[36] the
Triple Layer Model (TLM),[37] the Stockholm Humic Model
(SHM),[33] the electrostatic submodel based on the Basic Stern
concept[38] and the Non-Ideal Competitive Adsorption Don-
nan Model (NDM).[39] The minimum number of required input
parameters differs from four for the DLM to eight or more for
the TLM and the NDM. For nearly all modelling alternatives,
numerous input parameters are needed such as: site density,
specific surface area, stability constants and one or two capac-
itance values. Some of these are not always easy to determine
and default parameters are sometimes inserted and adjusted for
better results.

As an alternative to surface complexation models, several
adsorption equations differing in complexity from the soil–
liquid partitioning coefficient (linear Kd, the simplest) to NDM
(the most complex) exist. They differ conceptually from the
SCMs because they do not employ electrical double-layer (EDL)
theory.

Some chemical models (ECOSAT, Visual MINTEQ and
WHAM V andVI ) are used to evaluate the soil solution chemistry
in a variety of soils. However, all these models show rela-
tively accurate estimates when they are optimised and so the
analysis of soil solution extracts is always necessary for their
optimisation.[33] Nevertheless, their performance is not signifi-
cantly better or in some cases is worse than simpler approaches
(e.g. see [29]) We seek to create a new model using the Biotic
Ligand Model (BLM) approach to integrate the affinity con-
stants measured in a terrestrial model with metal chemistry and
cation competition interactions in soils. This is inherently simple
and should be viewed as an intermediate approach between the
fully mechanistic models, which are quite difficult to parame-
terise, and the empirical regressions, which however yield little
information to help understand the chemistry of the system.

Specifically, the aim of the present study is to quantify the
affinity constants of Ca2+, Cd2+, Cu2+ and H+ to the active

surfaces of different textural soils and to evaluate the potential
of this approach to predict the speciation of copper in soil solu-
tions using the software MINEQL+ in the presence of varying
levels of competing cations. For the evaluation of these constants,
we decided to adapt a biotic ligand model to the soil. The recent
concepts of the BLM[40–44] and of the terrestrial biotic ligand
model (TBLM)[45–48] have gained increased interest. In both the
BLM and TBLM models, both metal speciation and interactions
of the metal at the site of toxic action are taken into account.
BLMs have been developed for application in the aquatic envi-
ronment and are designed to predict metal toxicity by integrating
the most important determinants of toxicity. The term biotic lig-
and refers to a discrete yet abstract receptor, generally the gill
membranes of fish. The TBLM models have been developed to
quantify the ecotoxicity of metals in soils, for example Cu and
Ni toxicities to barley root elongation.[45] In a similar approach,
we are replacing the biotic ligand representing the gill with an
abstract ligand representing the soil reactive surfaces – a soil
ligand. Unlike the aquatic BLM, this would not directly predict
effects on a biological surface – but could be a great improve-
ment to model chemical speciation in soil solutions and allow
the quantitative evaluation of competing effects on chemical spe-
ciation. If this modelling approach works, it is then very easy
to later add a true biotic ligand representing a receptor ligand
from a would-be plant root, soil invertebrate or other biological
receptor. The affinity constants of these biotic ligands with dif-
ferent cations would have to be determined independently and
their integration in the modelling software would then be easy.
Several studies have supplied some biotic ligand constants for
earthworms,[49] algae,[50] plankton,[51] trout[52] and plants.[43]

The main objective of the study was to determine the affin-
ity constants of Cu2+, Cd2+, Ca2+ and H+ to soil surfaces, to
evaluate the impact of different textural soils and to examine
the competing effects of Cd2+, Ca2+ and H+ on the chemical
speciation of copper. We also compared the experimental and
predicted values using various approaches.

Model descriptions
MINEQL+
MINEQL+[53] is a chemical equilibrium modelling system
that can be used to perform calculations at low temperatures
(0–50◦C) and low to moderate ionic strength (<0.5 M).
MINEQL+ operates following three steps: creation of a system
by selecting chemical components from a menu with the possi-
bility of adding new ligands, then scanning the thermodynamic
database, and finally running the calculations with actual mea-
sured concentrations included. The pH values and ionic strength
can be calculated by the software or included manually. Com-
plexation, dissolution and precipitation are taken into account.
The output data module allows the modelling of the activity of
each species of each component.

Model development
The conceptual model included metal interactions with organic,
inorganic and soil active surfaces as well as the competition
between the target cations for these ligands (Fig. 1).

Thermodynamic constants for inorganic reactions were
obtained from the National Institute of Standards and Tech-
nology database[54] and the MINEQL+ model.[53] These two
databases are a compilation of thermodynamic constants from
the literature. Most of the thermodynamic constants agree quite
well for the inorganic complexes, so MINEQL+ values are used
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Fig. 1. Conceptual framework of solid phase-controlled biotic ligand model.

for simplicity. In this first study, organic complexation reactions
were considered but were assumed to be constant for each soil.
The effects of these assumptions are attenuated by the fact that
a value of the parameter α (as the factor of free ligand and the
affinity constant value) will be known, and so a specific value of
the organic constant can be attributed to each soil. The second
assumption is that the active soil surface is considered as a dis-
crete binding site with one type of site. The idea was to develop a
single-surface model to predict metal activities in soil consider-
ing soil as an independent sorption surface in the solid phase.The
thermodynamic constant obtained will be an average between the
major sorption surfaces, namely the soil organic matter, the clay
silicates and the iron and aluminium hydroxides. According to
Weng et al.,[55] in sandy soils (two of the three soils used here),
the activity of free metal ions is principally controlled by the soil
organic matter. We also assumed that adsorption to iron hydrox-
ides was not significant and that the contribution of clay silicates
could possibly be important relative to the soil organic matter
content in situations where we observed high concentrations of
metals. The consideration of a single surface seems to be a cor-
rect simplification in a first approximation, but it is important to
keep in mind that the affinity constants will not be affected by a
specific sorption surface.

The mass balance of the maximum complexation capacity
(CCS) of a given soil at a given pH can be written as:

CCS = [(Cu–S)] + [(Ca–S)] + [(Cd–S)] + [(H–S)]
+ [S] +

∑
[(M–S)]

= KCu × [Cu] × [S] + KCa × [Ca] × [S] + KCd × [Cd]
× [S] + KH × [H] × [S] + [S] +

∑
[(M–S)] (1)

where [(Cu–S)], [(Ca–S)], [(Cd–S)] and [(H–S)] represent the
activities of Cu, Ca, Cd and H respectively adsorbed on the soil
surface (S) with an assumed 1 : 1 stoichiometry.The charges have
been omitted for brevity and all the reactions were defined on the
basis of the activities, rather than concentrations. The term [S]
represents the free soil surface, with one negative charge. The
term

∑
[(M–S)] represents the other metallic cations adsorbed

on the soil surface. We initially presumed that these metals are
not be significantly implicated in the competitive reactions and
so, the term

∑
[(M–S)] was assumed as a constant (we later see

that this seems a problem for Al under acidic pH). The terms K
(KCu, KCa, KCd and KH) represent the affinity constants between

the cations and the soil ligand, and they can be used like any other
constants of a metal to a ligand (Eqn 2):

KCu = [(Cu–S)]
[Cu] × [S] (2)

In the general case, the mass balance of the Cu ‘potentially
available’ for biological receptors can be divided in two classes:
the Cu present in the soil solution (free and weakly complexed
Cu) and a pool of Cu adsorbed on the soil surfaces, which can
be available to resupply the soil solution. So the total Cu (total
available Cu, in this case) can be written following Eqn 3:

[Cu]total = [Cu] +
∑

[Cu]inorg +
∑

[Cu]org + [(Cu–S)]
= [Cu](1 + αinorg + αorg) + [(Cu–S)] (3)

where [Cu]inorg and [Cu]org represent the Cu associated with
inorganic and organic ligands respectively. The other terms
remain as defined for Eqn 1. The coefficients αinorg and αorg
represent respectively the inorganic and organic coefficients.
For example, the inorganic coefficients can be evaluated with
the major inorganic species as:

αinorg = KCu(OH)−[OH−] + KCu(OH)◦2 [OH−]2

+ KCu(NO3)+[NO−
3 ] . . . (4)

Nevertheless, the inorganic metal complexes (including car-
bonate and hydrolysed species) can be neglected in comparison
with the organic complexes. The organic coefficient can be rep-
resented with the same approach as Eqn 4, but this evaluation
becomes more difficult because of the heterogeneity of the dis-
solved organic ligands. We will assume, for each soil, a constant
value α as the sum of αinorg + αorg ≈ αorg, which is inspired from
what is used in similar electrochemical work for organic lig-
and strength[56] and which is based on the assumption that this
α dissolved organic matter (DOM) parameter is similar across
different soils. However, this could eventually be improved
with actual DOM measurements – our initial modelling results
showed that this assumption did not seem to induce significant
errors. This will eventually need to be checked or improved if
we try this approach with organic soils. By combining Eqns 1
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and 2 and considering this last assumption, the expression of the
pCu activity can be obtained as:

[Cu2+] =
[(Ca–S)] + [(H–S)] + [(Cd–S)] + [(S)]

+ [Cu]total + ∑[(M–S)] − CCs

1 + α

= KCa[(S)]
1 + α

[Ca2+] + KCd[(S)]
1 + α

[Cd2+] + KH[(S)]
1 + α

[H+]

+ 1

1 + α
[Cu]total + [(S)] + ∑[(M–S)] − CCs

1 + α

= A[Ca2+] + B[Cd2+] + C[H+] + D[Cu]total + E

(5)

where all the parameters remain as previously defined.
The A, B, C, D and E constant parameters could be obtained

using the appropriate dataset and a multiple linear regression
in statistical software assuming that the explanatory variables
(Ca2+, Cd2+, H+ and Cutot) are uncorrelated. From this deter-
mination of the parametersA, B, C, D and E, we could extrapolate
to the affinity constants of each metal to the soil (e.g see [44]).
The second step was to integrate these values in modelling soft-
ware and to compare the predicted and observed free Cu (pCu)
values.

Experimental
Analytical methods
The pH was determined using a Fisher Model 620 pH meter
and a double junction pH electrode (Fisher Scientific, Ottawa,
ON, Canada). The pCu (pCu = −log (Cu2+)) was determined
with a detecION Cupric 227 (London Scientific, London, ON,
Canada). The Cu electrode was calibrated daily following an
iminodiacetic acid-buffer method,[19] allowing a detection limit
of ∼10−14 M Cu2+. The pCa (pCa = −log (Ca2+)) was deter-
mined with pHoenix calcium ion-selective electrode (London
Scientific). We used a classic calibration method for this elec-
trode. Different amounts of Ca(NO3)2 were added to a blank with
ionic strength fixed at 0.01 M with KNO3. The response was lin-
ear between 2 and 6 pCa units. The pCd (pCd = −log (Cd2+))
was obtained indirectly with the differential pulse anodic strip-
ping voltammetry (DPASV) method.[57] We used a Radiometer
Analytical Voltalab PST050 apparatus and MDE 150 polaro-
graphic stand. The system consisted of three electrodes: (a) a
platinum wire as counter-electrode; (b) an Ag/AgCl electrode
(saturated KCl) as the reference electrode (E◦

Ag/AgCl = +0.20V
(standard calomel electrode, SCE)); and (c) a hanging mercury
drop electrode (HMDE) as working electrode. An approximate
volume of 10 mL of sample was transferred to acid-cleaned
single-compartment Teflon cells (25 mL). They were used to
minimise adsorption of metals and ligands on the glass surface.
The samples were then degassed with oxygen-free N2 for 5 min
and maintained under a N2 blanket for the remainder of the anal-
ysis. Solutions were stirred during the degassing and during the
deposition step by a rotating polytetrafluoroethylene magnetic
bar. The specific settings used for the differential pulse were
pulse amplitude, 40 mV; step amplitude, 2 mV; step duration,
20 ms; and pulse duration, 10 ms. For all DPASV measurements,
a rotation rate of 800 rpm was used.The apparatus was monitored
using the Voltamaster 4 software (Radiometer, Lyon, France).
Samples were plated at −800 mV for 45 s, followed by a 15-s
quiescent period (without stirring) before the potential was
scanned in the positive direction, using the differential pulse

mode, to a final potential of −450 mV. The intensities measured
were converted into labile concentrations using the calibration,
and free cadmium activities were estimated by the following
equation (see [57] for details):

[Cd] = γCd




[Cd]DPASV

1 + KCdOH+[OH−] + KCd(OH)◦2 [OH−]2

+ KCd–NO+
3
[NO−

3 ]




(6)

The thermodynamic constants were taken from MINEQL+
software and the activity coefficients (γCd ∼0.67) were calcu-
lated with the Debye–Hückel equation. The activities instead of
concentrations were used for all cations.

The cation exchange capacity (CEC) was calculated as the
sum of exchangeable cations (Ca, Mg, K, Na, Al, Fe, Mn, Cd,
Pb, Zn and Cu) that were displaced by a BaCl2 treatment.[58] The
cations were measured by ICP-AES using an Iris advantage/1000
instrument from Jarrell Ash Corporation (Franklin, MA, USA)
with the appropriate wavelengths. The measured value of each
metal was assumed to be its total ‘available’ (as defined previ-
ously) concentration and was used in the modelling software.
The DOC concentrations were measured in KNO3 extracts
(2 : 20 w/v) after filtration to <0.45 µm, with a total organic
carbon analyser modelApollo 9000 (Tekmar Dohrmann, Cincin-
nati, OH, USA) using a combustion tube at 700◦C and a
non-dispersive infrared (NDIR) detector. The detection range
varied from 4 µg to 25 000 mg of C per litre of solution. The
data acquisition was done using the Apollo 9000 TOC Talk soft-
ware (Tekmar Dohrmann). Soil organic matter was measured
using a wet oxidation–redox titration method[59] with an approx-
imate factor of 1.7 to convert mass value from organic carbon to
organic matter.[60]

Selection of soils and experimental setup
Three soils were selected with diverse physicochemical proper-
ties as summarised in Table 1.

For each sample, a dry mass of 2 g of soil (sieved beforehand
to <2 mm) was placed in centrifuge tubes (50 mL) and con-
taminated using the following procedure to a final soil : solution
ratio of 2 : 20 w/v. Three cadmium concentrations (nominal 5,
10 and 20 mg Cd kg−1 of dry soil added), three copper con-
centrations (nominal 50, 100 and 200 mg Cu kg−1 of dry soil
added) and three calcium concentrations (nominal 50, 250 and
500 mg Ca kg−1 of dry soil added) were made in a full factorial
setup (testing all possible combinations). The constants were
determined using a total of 27 samples per soil, six samples per
soil were added for the validation and overall, a total of 99 soil
samples were spiked.

The stock solutions of Cd(NO3)2, Cu(NO3)2 and Ca(NO3)2
were prepared by dissolution of appropriate salts in Milli-Q
water. Water purified using a Milli-Q system (Millipore) (resis-
tance 18 M�) was used to prepare all solutions. The ionic
strength was made uniform using 0.01 M KNO3 (Fisher Scien-
tific, Ottawa, ON). The 99 samples were placed under conditions
of slow horizontal shaking for 1 month; the tubes were opened
periodically to ensure an air exchange. After centrifugation
(10 min at 4000g at an ambient temperature of ∼22◦C), the
supernatants were removed from the tubes. The measurements
were done directly without prior filtration in the order: pCu, pH,
pCa, two repetitions of the pCu measurements and finally the
Cd measurements with DPASV. The samples were then filtered,
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Table 1. Physico–chemical properties of the soils
CEC, cation exchange capacity; SOM, soil organic matter; DOC, dissolved

organic carbon

Angus soil

Physical properties
% clay % sand % silt Density (g cm−3)

16 45 39 1.28 (±0.01)

Chemical properties
pH CEC SOM DOC

(in 0.01 M KNO3) (cmol(+) kg−1) (g C kg−1) (g C L−1)
7.6 (±0.1) 32.2 (±0.4) 11 (±2) 27 (±4)

Mascouche soil

Physical properties
% clay % sand % silt Density (g cm−3)

7 82 11 1.22 (±0.01)

Chemical properties
pH CEC SOM DOC

(in 0.01 M KNO3) (cmol(+) kg−1) (g C kg−1) (g C L−1)
7.1 (±0.1) 13.1 (±0.5) 29 (±6) 54 (±8)

Valbo soil

Physical properties
% clay % sand % silt Density (g cm−3)

2 93 5 0.95 (±0.02)

Chemical properties
pH CEC SOM DOC

(in 0.01 M KNO3) (cmol(+) kg−1) (g C kg−1) (g C L−1)
6.83 (±0.07) 48 (±4) 210 (±11) 449 (±28)

acidified to 2% (v/v) with HNO3 (Trace Metal Grade) and anal-
ysed with ICP-AES to determine the total metals (Cu, Cd and
Ca) in the extracts.

Data treatment
The data of interest, pH, pCu, pCa, CEC and Cutotal, were
converted into activities in mol L−1. The CEC value, usually
expressed in cmol(+) kg−1, was converted into mol L−1 using
the density (g cm−3) of the soil (Table 1). We obtained the con-
stant parameters (A, B, C, D and E) defined in Eqn 5 using
a statistical analysis using the SPSS software (statistical pack-
age for social science) version 13.0 (SPSS Inc., Chicago, IL,
USA) for Windows. A multiple linear regression was imposed
with the free ion copper activity as dependent value (response
variable).The resulting regression coefficients allowed the deter-
mination of the parameters of interest, namely: KCa, KCd, KH
and α. By integrating these values into Eqn 3, the affinity con-
stants between copper and active soil surfaces (KCu) could be
deduced. The regression coefficients were used to assess the
relative importance of the explanatory variables. The highest
standard regression coefficients were those that contributed the
most to the estimated values.[61]

Results and discussion
Graphic observations – a qualitative approach
The variation of pCu as a function of the nominal Cd and Ca
added is represented for the three soils in Fig. 2.

The competition between Cd, Ca and Cu is illustrated in
these three graphs. An increase in the Cd (or Ca) treatment will
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Fig. 2. Evolution of the pCu as a function of the nominal Cd.The results are
represented for three Cu treatments for (a) the clay soil (Angus) with the first
Cu treatment (nominal Cu = 50 mg kg−1); (b) the sandy soil (Mascouche) for
the second Cu treatment (nominal Cu = 100 mg kg−1); and (c) the organic
sandy soil (Valbo) for the third Cu treatment (nominal Cu = 200 mg kg−1).
Increasing size of square indicates increasing spike of Ca.

increase the free Cu activities in the soil solutions. The rela-
tion is true for the three different soils as well as for the three
Cu treatments. The results for each soil with each Cu treatment
are not represented but the shapes of the graphs are identical.
An increase of Cd additions from 5 to 20 mg kg−1 decreased
the pCu to ∼0.2 pCu units; this is equivalent to an increase by
a factor of 1.6 in terms of activities. An increase of Ca addi-
tions from 100 to 500 mg kg−1 decreased the pCu less than
0.1 pCu units, meaning an increase by a factor of 1.25 in terms
of activities. However, in contrast to studies in aqueous media
where the pH can be controlled relatively carefully, the treat-
ments of the soils with Cd and Ca decreased soil pH. This can be
attributed to competition between these cations and the protons,
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Fig. 3. 3-D representation among the free solution activities of Cu2+, H+
and Ca2+.

but decreasing pH will certainly affect Cu speciation in the soil
solutions. These two factors are difficult to dissociate. However,
in a first qualitative approach, by comparing the relative compet-
itive effects of Ca and Cd on the speciation of Cu, we observed
that for a smaller addition of Cd, the impact on free Cu2+ was
larger (Fig. 2).

A 3-D representation of the parameters of interest (Ca, Cu
and H) is found in Fig. 3. In this case, we plotted the activities of
three cations instead of the negative logarithmic values because
Eqn 5 was used for deducing the different parameters and this
it is based on activities. Visually, we could observe a relation
between the three parameters that seems to indicate an increase
in the activity of a cation with increasing concentration of one
or both of the other two species.

The shapes of the graphs are qualitatively identical for the
two other soils (not shown here) and for each combination of the
three cations.

Multiple regressions – a quantitative approach
To obtain the different affinity constants between the target
cations and the active soil surfaces, a multiple linear regression
was imposed with the pCu concentration as dependent value
(response variable). Using the 27 samples of each soil indepen-
dently, the regression coefficients, namelyA, B, C, D and E, could
be deduced. For each soil, six samples not initially integrated
into the statistical determination of the regression coefficients
were used to validate the linear regressions. The results for each
soil are summarised independently in the three following equa-
tions. In all cases, an analysis of covariance was made and the
explanatory variables (Ca2+, Cd2+, H+ and Cutot) appeared to
be uncorrelated.

The relation obtained with the clay soil (Angus) is:

[Cu2+](±3 × 10−9) = 1.3 × 10−6(±0.5 × 10−6) × [Ca2+]
+ 1.5 × 10−1(±0.6 × 10−1) × [H+]
+ 2.6 × 10−1(±0.9 × 10−1) × [Cd2+]
+ 4.5 × 10−5(±0.7 × 10−5) × [Cu]tot

− 1 × 10−11(±0.9 × 10−11) (7)

where R2 = 0.897, R2
adjusted = 0.871, P < 0.001.

The relation obtained with the sandy soil (Mascouche) is:

[Cu2+](±3 × 10−9) = 8 × 10−7(±3 × 10−7) × [Ca2+]
+ 6.1 × 10−2(±0.9 × 10−2) × [H+]
+ 2.5 × 10−1(±0.9 × 10−1) × [Cd2+]
+ 6 × 10−5(±1 × 10−5) × [Cu]tot

− 8 × 10−10(±4 × 10−10) (8)

where R2 = 0.820, R2
adjusted = 0.788, P < 0.001.

The relation obtained with the sandy-organic soil (Valbo) is:

[Cu2+](±3 × 10−9) = 2 × 10−7(±1 × 10−7) × [Ca2+]
+ 1.4 × 10−2(±0.7 × 10−2) × [H+]
+ 1.6 × 10−2(±0.7 × 10−2) × [Cd2+]
+ 9 × 10−5(±1 × 10−5) × [Cu]tot

− 8 × 10−9(±3 × 10−9) (9)

where R2 = 0.857, R2
adjusted = 0.830, P < 0.001.

In the three equations, the adjusted correlation coefficients as
well as the significance values were excellent. The errors on the
regression coefficients were quite high, between 11 and 50%,
except for the constant parameter (E) in the Angus soil that had
a 90% error value.

The relations between the pCu values predicted by these equa-
tions and the measured pCu values (not represented here) reveal
that all the predicted pCu values were within a factor of 2 of the
observed values and the majority of the predicted pCu values for
the validation samples (not included in the determination of the
regression coefficients) were also within that range. This sug-
gests that the model is very robust for the three kinds of soils
used in the experiment. However, the model can only be val-
idated for our pH and pCu ranges and cannot be extrapolated
outside these ranges.

The standardised coefficients allowed us to evaluate the rel-
ative influence of each parameter. It seems clear that the pCu
concentration in soil solution is principally influenced by the
total copper concentration (explains up to 50% of variance). The
other components have statistically significant yet much lower
contributions to explaining the pCu concentrations (explaining
from 2 to 25% of variance).

In an attempt to evaluate differences among our soils, the
same exercise was repeated here, but all the samples were con-
sidered in the linear regression. The resulting linear regression
is represented by the following equation:

[Cu2+](±3 × 10−9) = 4 × 10−7(±2 × 10−7) × [Ca2+]
+ 3.3 × 10−2(±0.7 × 10−2) × [H+]
+ 6.5 × 10−2(±0.8 × 10−2) × [Cd2+]
+ 7.0 × 10−5(±0.6 × 10−5) × [Cu]tot

− 2 × 10−9(±1 × 10−9) (10)

where R2 = 0.836, R2
adjusted = 0.827, P < 0.001.

The correlation coefficient and the significance value were
also excellent and the errors on each regression coefficient were
rather large, between 9 and 50% in this case.

The comparison of the pCu values predicted by Eqn 10 and the
measured pCu (not represented here) showed that the majority
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Table 2. Regression (standardised and unstandardised) coefficients and affinity constants between
cations and the different soils obtained with the analyses of each soil independently and with the all

dataset
n.a., not applicable for standardised coefficients

Clay soil (Angus)

Standardised coefficients
A B C D E

0.264 0.139 0.078 0.650 n.a.

Affinity constant and α

log KCa log KH log KCd log KCu α

0.0 (±0.2) 5.1 (±0.3) 5.3 (±0.3) 5.5 (±0.1) 2.2 × 104 (±0.3 × 104)

Sandy soil (Mascouche)

Standardised coefficients
A B C D E

0.173 0.171 0.056 0.683 n.a.

Affinity constants and α

log KCa log KH log KCd log KCu α

0.1 (±0.3) 5.0 (±0.3) 5.6 (±0.3) 5.9 (±0.2) 1.7 × 104 (±0.3 × 104)

Organic sandy soil (Valbo)

Standardised coefficients
A B C D E

0.024 0.068 0.012 0.969 n.a.
Affinity constants and α

log KCa log KH log KCd log KCu α

−1.6 (±0.3) 3.3 (±0.3) 3.3 (±0.3) 4.9 (±0.1) 1.1 × 104 (±0.1 × 104)

All soils

Standardised coefficients
A B C D E

0.095 0.320 0.020 0.786 n.a.

Affinity constants and α

log KCa log KH log KCd log KCu α

−0.84 (±0.01) 4.1 (±0.2) 4.4 (±0.2) 5.3 (±0.1) 1.4 × 104 (±0.1 × 104)

of the predicted pCu were within a factor of 2 of the observed
values. Moreover, the relation between the predicted and the
measured pCu was excellent for two soils but presented some
divergences with the clay soil (Angus), principally for the valida-
tion samples. We could explain this because clay–sand and soil
organic matter (SOM) allow two different kinds of adsorption
sites with different affinity constants. The determination of the
different affinity constants for each soil will allow us to better
evaluate this hypothesis.

As expected, the pCu concentration was principally con-
trolled by the total copper concentration (explaining 45% of
the variance) but this time the pH (explaining 30% of the vari-
ance) seemed to have a higher effect than Ca or Cd. This is
in accordance with numerous papers on copper speciation in
soil solution.[16,62,63] It is important to underline the signifi-
cance of the pH term, given the small spread of pH values in our
dataset.

The affinity constants of Ca, Cd and H were evaluated from
Eqn 5 using the two approaches, for each soil individually and for
all soil data combined, thus providing the individual regression
coefficients A, B, C, D and E. The affinity constant for Cu was
determined, in a second step, using Eqn 3 and all the samples of
interest.

The resulting values are summarised in Table 2.

The errors on each log K value were deduced using the errors
on each regression coefficient and the error propagation rela-
tions, except for log KCu for which the error came from the
standard deviation of the values deduced for all the samples.
The relative errors values for log K were between 2 and 9%,
very encouraging for a conceptual model with a limited dataset.
Moreover, the K values had the same order of magnitude as the
values obtained in different TBLM studies,[45,46] and always in
the same increasing order that is observed in BLM studies:[44,64]
Ca � H < Cd < Cu. The affinity constants obtained for each
cation in the different soils are quite similar and this suggests that
it might not be necessary to differentiate the affinity constants
in different soils. One possible explanation for this is that the
reactivity of the soil surfaces is controlled by the heterogeneous
coatings on those surfaces made up of natural organic matter,
silica and metallic oxides. This coating might be similar in min-
eral soils of different origins and the textural class would then
control the reactive surface area (measured as effective CEC)
but with little influence on the selectivity of that surface. The
affinity constant for Ca has the largest variability. However, the
error in these values is very high owing to the error propagation
and the very low affinity constant values. The affinity constants
obtained with all the soils are given in Table 2. The increasing
order from Ca to Cu is always observed.
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Simulation treatment with MINEQL+: the modelling
approach
In each sample, the activities of free Cu were calculated using
the chemical equilibrium software MINEQL+.[53] The program
gives the concentration of the target species from the metal lig-
and stoichiometry, the protonation constant and the measured
stability constants.The constant parameters used for each sample
were: temperature: T = 25◦C (fixed), ionic strength: I = 0.01 M
(fixed), log PCO2 = −2.5 (average between open atmosphere,
log PCO2 = −3.5 and atmosphere in soil, log PCO2 = −1.5) and
the concentration of the following species (Al3+, Cd2+, Cl−,
Fe3+, K+, Mg2+, Mn2+, Na+, NO−

3 , Pb2+, PO3−
4 , SO2−

4 , Zn2+
and active soil surface concentration). The total concentrations
of the target species involved (Catot, Cdtot and Cutot) were
integrated, for each sample, as the exchangeable concentrations
measured by BaCl2 displacement.[58] The experimentally mea-
sured pH values were then integrated. Moreover, by creating a
new ligand ‘Soil’ in the MINEQL+ software (with the affinity
constants for each cation expressed as: KCu–S = [Cu–S]

[Cu] × [S] etc.. . .)
and a new organic ligand X (with α = [X] × KCu–X and so, giving
an arbitrary value to [X], log KCu–X can be evaluated), we could
obtain the speciation of the different solutions studied and com-
pare the results with experimental measurements. The relation
between the experimental pCu and modelled pCu is represented
in Fig. 4. In the case of Fig. 4a, the affinity constants integrated in
the software are the values deduced for each soil independently,
and in the case of Fig. 4b, the affinity constants are the values
obtained with the whole dataset.

The results observed in Fig. 4a are very encouraging because
all the predictions are within a factor of 2 of the measured val-
ues. All the validation samples are included in this range too.
The errors bars represented on the graph are: on the x-axis, the
standard deviation on the three pCu measurements, and on the
y-axis, the standard deviation obtained with a Monte Carlo simu-
lation applied to the affinity constants. However, it is fastidious to
use this method for integration into the MINEQL+ software; the
standard deviation values of 0.1 pCu units obtained in the three
samples was assumed to be representative of the other samples.

In Fig. 4b, the pCu values are predicted using MINEQL+ with
the affinity constants deduced from all the soil data. This figure
suggests that using an average value for the affinity constant
between a cation and diverse soil surfaces is a good approxi-
mation. In fact, the majority of the pCu predictions were within
a factor of 2 of the measured pCu except for some validation
samples from the Angus soil (calcareous clay soil).

For the two distinct approaches, an evaluation of the model
performance using the root mean square error (RMSE) was
made[34]

RMSE =
√∑

i(xi − xip)2

n − l
(11)

with xi, the measured value for the data point i; xip, its predicted
value; n, the number of data points; and l, the number of param-
eters. A small value of RMSE implies a good data fit of the
model and the values obtained in Fig. 4 indicate that the model
was adequate to describe the speciation of Cu in the soil solu-
tion studied. Moreover, the values of RMSE were lower than
or of the same order of magnitude as other values published
(0.16–0.35,[33] 0.54–1.52,[34] 0.28–0.40[65]) by various authors
modelling metal speciation in soil solution with other conceptual
models.

6.5 7.0 7.5 8.0 8.5 9.0
6.5

7.0

7.5

8.0

8.5

9.0

pC
u 

pr
ed

ic
te

d

pCu measured

RMSE � 0.222

(a)

Angus soil
Mascouche soil
Valbo soil
Angus soil (validation samples)
Mascouche soil (validation samples)
Valbo soil (validation samples)
1 : 1 line

RMSE � 0.398

6.5 7.0 7.5 8.0 8.5 9.0
6.5

7.0

7.5

8.0

8.5

9.0

(b)

pC
u 

pr
ed

ic
te

d

pCu measured

Angus soil
Mascouche soil
Valbo soil
Angus soil (validation samples)
Mascouche soil (validation samples)
Valbo soil (validation samples)
1 : 1 line

Fig. 4. Comparison between the measured pCu and the pCu predicted by
MINEQL+ using (a) the own affinity constants for each soil; and (b) the
affinity constants obtained with the whole dataset. The solid line represents
the 1 : 1 ratio and the dotted lines represent a variation factor of 2 above
and below the 1 : 1 line. The stars represent the samples not used in the
determination of the regression coefficients.

Validation of the method
For the validation of the model concept and the affinity constant
values, nine other soils with different physical and chemi-
cal properties were analysed for the same parameters as the
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Table 3. Initial physical and chemical characteristics for the validation soils
n.d., not determined

Name Land use pH Soil organic matter Total soil Cu Total soil Cd
(0.01 M KNO3) (g C kg−1) (mg Cu kg−1) (mg Cd kg−1)

Site 2B Urban 7.53 (±0.04) 53 (±3) 488 (±24) n.d.
CN-25 Urban 7.90 (±0.10) 28 (±2) 529 (±178) n.d.
Cor-8 Orchard Sludge-B 5.20 (±0.02) 15 (±5) 27 (±2) 1.3
Cor-19 Orchard Sludge-A 6.20 (±0.10) 63 (±2) 333 (±48) 38.1
Cor-24 Orchard Sludge-B 6.01 (±0.02) 44 (±1) 236 (±21) 30.7
7–1 Grass cover 5.60 (±0.01) 23 (±23) 191 (±2) n.d.
8–1 Grass cover 6.20 (±0.30) 27 (±27) 375 (±2) n.d.
10–1 Grass cover 5.50 (±0.02) 26 (±26) 331 (±4) n.d.
Médoc-B Pesticides 6.25 (±0.05) n.d. 99 n.d.

Table 4. Input data used for the calculation of pCu value for
the sample Site 2B

CEC, cation exchange capacity

log KCu–S 5.3
log KCd–S 4.4
log KCa–S −0.84
log KH–S 4.1
[Cu] (M) 2.065 × 10−6

[Cd] (M) 6.32 × 10−8

[Ca] (M) 3.48 × 10−3

CEC (M) 1.12 × 10−2

pH 7.49
log PCO2 −2.5
Ionic strength (M) 0.01
Temperature corrections Off

three first soils. Table 3 represents the main physicochemical
properties of these soils.

The relation between the observed and predicted pCu fol-
lowing Eqns 7, 8, 9 and 10 (not represented here) reveals that
each soil is better represented by one equation (Eqn 7, 8 or 9)
but it is also well represented by the overall equation (Eqn 10).
Moreover, the equation representing each soil seems to be in
agreement with the texture of the soil. For example, the series
of 7–1, 8–1 and 10–1 soils (grass cover) is better represented by
the Valbo equation (sandy organic soil).

An example of the input data used for a pCu calculation is
given for the Site 2B sample in the Table 4.

The pCu value obtained (pCu = 8.86) was then plotted v. the
measured pCu value (pCu = 8.81) as well as all the other pCu val-
ues predicted by MINEQL+ with the average affinity constants v.
the observed pCu (Fig. 5).

So, except for one soil (cor-8), all the predicted pCu were
within a factor of 2 of the measured pCu. The value of RMSE
(cor-8 data points are not taken into account for its calculation)
is very encouraging for the validity of the model concept and
for the confidence of the affinity constants for the cations of
interest in the present research. The one soil presenting a rather
large disparity between the predicted and the measured pCu has
an acidic pH (pH = 5.2) and we attribute this divergence to the
presence of Al at this pH. Under acidic soil conditions, there is
a drastic increase in the solubility of Al, and Al will then occupy
a significant portion of the exchangeable pool. The free Al3+
or its hydroxyl ions (Al(OH)2+ and Al(OH)+2 ) will certainly
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Fig. 5. Relation of the observed v. predicted pCu with MINQEL+ using
the affinity constant obtained with all the dataset. The solid line represents
the 1 : 1 ratio and the dotted lines represent a variation factor of 2 above and
below the 1 : 1 line.

compete with other cations on the active soil surfaces of the
soils. The affinity constant for Al would need to be determined
and integrated into the model if one is to use this approach in
acidic soils. The current model seems to be robust for different
kind of soils with pH > 5.5.

Conclusions

The model approach described in the present paper allows the
determination of affinity constants between different cations and
the active soil surfaces. The objectives were to generate a simple
model within which affinity constants could be incorporated and
then verify the robustness of the model in its application to sev-
eral soils with different physico–chemical properties. The model
works using simple soil chemistry measurements (soil pH and
effective CEC) and currently only four soil ligand affinity con-
stants. The affinity constants we obtained follow an increasing
order (Ca � H < Cd < Cu) similar to that observed in the BLM
and other SCMs. Moreover, the integration of these parameters in
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the chemical equilibrium modelling software MINEQL+ allows
the speciation of the metals of interest by integrating initial char-
acteristics of the soil (pH, CEC, total metal concentrations in soil
extracts, ionic strength and CO2 pressure). The relation between
the measured and predicted pCu are very encouraging when
using the affinity constants for each soil or even using affinity
constants obtained with the whole dataset. These results sug-
gest that an average affinity constant value between each cation
and active soil surfaces allows a reasonable evaluation of metal
speciation. However, the model shows some limitations under
acidic soil conditions and this is attributed to the presence of
aluminium, which will compete for sorption on the active sur-
faces of soils and will require the determination and integration
of a soil affinity constant for Al.
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