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Are Arctic Ocean ecosystems exceptionally vulnerable
to global emissions of mercury? A call for emphasised
research on methylation and the consequences
of climate change
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Environmental context. Mercury is a global contaminant that has entered Arctic food webs in sufficient
quantity to put at risk the health of top predators and humans that consume them. Recent research has
discovered a photochemical process unique to the Arctic that leads to mercury deposition on frozen surfaces
after polar sunrise, but the connection between mercury deposition and entry into food webs remains tenuous
and poorly understood. We propose here that the Arctic Ocean’s sensitivity to the global mercury cycle depends
far more on neglected post-deposition processes that lead to methylation within the ice–ocean system, and
the vulnerability of these processes to changes occurring in the cryosphere.

Abstract. Emissions, atmospheric transport and deposition have formed the emphasis of recent research to understand
Hg trends in Arctic marine biota, with the expressed objective of predicting how biotic trends might respond to emission
controls. To answer the question of whether the Arctic Ocean might be especially vulnerable to global mercury (Hg)
contamination and how biota might respond to emission controls requires a distinction between the supply of Hg from
source regions and the processes within the Arctic Ocean that sequester and convert mercury to monomethyl Hg (MeHg).
Atmospheric Mercury Depletion Events (AMDEs) provide a unique Hg deposition process in the Arctic; however, AMDEs
have yet to be linked quantitatively with Hg uptake in marine food webs. The difficulty in implicating AMDEs or emissions
to biotic trends lie in the ocean where several poorly understood processes lead to MeHg production and biomagnification.
We propose that sensitivity of the Arctic Ocean’s ecosystem to Hg lies not so much in the deposition process as in
methylation processes within the ocean, Hg inputs from large drainage basins, and the vulnerability these to climate
change. Future research needs to be better balanced across the entire Hg cycle.

Introduction

Research during the past fifteen years has shown Arctic biota to
be highly exposed to semi-volatile contaminants like Hg.[1] In
particular, northern aquatic ecosystems with long food webs, and
long-lived top predators are susceptible to the biomagnification
and bioaccumulation of Hg to levels of concern, both for the
ecosystem and for the humans who depend on these species for
much of their diet.[2,3]

In the mid 1990s, Schroeder et al.[4] discovered the unex-
pected deposition of atmospheric Hg to the frozen surface with
the advent of polar sunrise. Given an atmospheric residence
time of ∼0.7 years for Hg, this finding was revolutionary, and
immediately raised the question of whether such deposition
might make the Arctic a receptor of atmospherically cycling Hg.
Many studies ensued, and we now know that gaseous Hg under-
goes photo-chemical reactions involving halogens.[5] Despite
more than a decade of effort to measure and understand these
Atmospheric Mercury Depletion Events (AMDEs), a recent
comprehensive review of this process[6] makes but a very ten-
uous link between AMDE-deposited Hg and the Hg observed
in Arctic aquatic biota. Here, we propose that any connection

between AMDEs and Hg exposure in top predators is presently
masked by a poor understanding of the transfers and transfor-
mations of Hg in aquatic systems, and these latter need more
research.

Mercury is a global contaminant that cycles between air, soil
and water.[7] The assessment of the risks from contaminant Hg in
theArctic is fraught with difficulty.There is a natural background
cycle, difficulty in measuring ultra-trace concentrations, and
the capacity of Hg to change chemical form, with monomethyl
mercury (MeHg) exhibiting the greatest toxicity.[8,9] Based on
Sunderland and Mason’s[10] pre- and post-industrial Hg budgets
we have produced a global contaminant Hg budget (Fig. 1). This
budget implies: (1) terrestrial soils contain the largest reservoir
of contaminant Hg; (2) as a result, fluxes of contaminant Hg
to estuaries and continental shelves are important; (3) fluxes
between atmosphere and ocean are large with the net direction
uncertain; and (4) deep (>1500 m) ocean contains as much con-
taminant Hg as upper ocean. This last point is important as it
shows that Hg flux to the deep ocean has likely reduced Hg
exposure in the euphotic zone. The residence time of the upper
ocean (∼70 years) and the atmosphere (∼0.7 years) are both
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Fig. 1. Global contaminant Hg derived from the difference between pre-industrial and modern Hg
budgets for the abiotic system.[10] Surface soils provide the largest contaminant Hg reservoir, and rivers
act as conduits transporting large amounts of Hg from the terrestrial system to the estuary and ocean
shelves. The upper (<1500 m) and deep ocean share equal Hg burdens suggesting an effective vertical
flux, whereas the atmosphere exchanges are large with an uncertain net flux.

long enough to permit transport of Hg from industrial source
regions to the Arctic, a conclusion supported by a recent mass
balance for Hg.[11] Furthermore, the long residence time of the
ocean implies that this part of the system is likely no longer in
steady-state.

With respect to the Hg cycle, the Arctic Ocean has several
key characteristics. It receives large inputs of sediment, fresh-
water and carbon from land,[12,13] shelves comprise 50% of the
ocean’s area,[13] which is large by global standards, and the inte-
rior ocean (beyond the shelf) exhibits low productivity under
the polar pack ice, which leads to a very low particle flux into
the deep ocean.[13] The ice cover, acting as a seasonally-variable
barrier between atmosphere and ocean, implies that deposition
of atmospherically transported contaminants differs from open
oceans. The Outridge et al.[11] mass balance implies that atmo-
spheric Hg loadings to the Arctic Ocean cannot explain the
increasing Hg trends in higher trophic level biota.

Here we propose several post-depositional Hg processes that
are crucial to understand before we can link Hg deposition in the
Arctic to Hg burdens in high trophic biota in the ocean.

The importance of post-depositional processes
within the Arctic

Elemental gaseous mercury (Hg0) prevails in the atmosphere
(greater than 90%), but this form of Hg partitions weakly into
water, does not absorb strongly onto particles and is relatively
low in toxicity. To deposit Hg0 and hold it within aquatic sys-
tems requires conversion to HgII (Fig. 2). More important is the
conversion to the biomagnifying form, MeHg, which dominates
higher levels of the food chain (80–99%). Fig. 2 clearly implies
that transformations and transfers between Hg0, HgII and MeHg
must be understood before connections can be made between
Hg0 transported by the atmosphere and exposures to MeHg in
apex aquatic animals. Not only need we worry about transfor-
mations, which can occur in both directions, but we also need to
understand what controls the efficiency of such transformations
and transfers.

Further emphasising the importance of transformations and
transfer efficiencies is the apparent lack of coherence between
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Fig. 2. The percent of elemental Hg (Hg0), HgII and MeHg in Arctic
abiotic and biotic marine ecosystem components. Nearly all the Hg in the
Arctic’s atmosphere is Hg0,[16] but HgII is the dominant form in snow,[43]
soil including permafrost,[32] fresh and riverine water,[32] and ocean surface
water.[39] Primary and secondary producers at the bottom of the food web are
characterised by high levels of HgII and low MeHg,[42,44] which is reversed
at higher trophic levels. MeHg comprises nearly all the Hg in the top predator
beluga.[41]

trends of Hg emissions[14] or Hg in physical media,[5,15,16] and
biota.[17,18] The complexity of the Hg cycle in the Arctic (Fig. 3)
together with recent climate change in the cryosphere offer sev-
eral opportunities for climate variability to influence trends in
final receptors.[19,20] Outridge et al.[11] proposed that the large
inventory of HgII in the upper ocean could provide the means
by which variable methylation alone could produce observed
MeHg trends in biota. We identify four components of the Arc-
tic Ocean’s Hg cycle that are presently poorly understood, and
yet have a large potential to alter Hg exposure in top predators
(Fig. 3).
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Fig. 3. Post deposition processes of Hg to the Arctic Ocean that are susceptible to methylation to MeHg, the toxic
form that bioaccumulates and biomagnifies in food webs (schematic based on Outridge et al.[11]). Circled numbers
represent (1) atmospheric deposition to the ocean surface; (2) sediment methylation processes; (3) riverine and
terrestrial sources; and (4) ocean water column processes.
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Mercury deposition onto and entry
into the upper ocean
Mercury deposits on ice and snow through wet and dry depo-
sition and AMDEs potentially leading to high concentrations in
snow.[21,22] Once air temperatures rise above the melting point
of water, ice and snow can begin to thaw and some portion –
maybe a large portion – of the deposited HgII is reduced and
re-emitted to the atmosphere.[23–25] How efficient is the transfer
of deposited Hg from the snow and ice surface into the water and
thence into biota (Fig. 4)? Some mechanisms that have escaped
direct measurement might be very important. For example, blow-
ing snow contaminated with Hg deposited during AMDEs might
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Fig. 5. Within reducing sediments HgII may be methylated by sulfate-
reducing bacteria or other microbial communities and thence enter benthic
animals or diffuse into the water column.

enter polynyas thence to enter biota during spring production.
Microbes are also available in this environment to reduce HgII to
Hg0 and therefore promote evasion back to the atmosphere.[26]
Presently we have no quantitative estimates of the efficiencies
of these processes such that we could predict how much of the
deposited HgII actually winds up as MeHg in the food web, but
we do know that surface water in the Arctic is generally super-
saturated with Hg0.[27] In freshwater systems, Loseto et al.[28]
found snowmelt water to be the most significant source of MeHg
to Arctic lake systems, and even larger than wetlands where
methylation occurs in soils.

The methylation of Hg in sediments
Microbial communities in sediments that reduce sulfate also
produce MeHg (Fig. 5).[29,30] The Arctic Ocean contains large
estuaries and the greatest percentage of shelf area among all
world oceans. Clearly, production of MeHg in sediments could
be especially important as a source to bottom water and biota,
but given the large range in organic carbon supply over Arctic
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Fig. 6. Rivers provide HgII and MeHg (particulate and dissolved) to the Arctic Ocean. Arctic drainage basins
contain large areas of wetland, which are sites of Hg methylation. MeHg along with HgII may enter rivers bound to
soil organic matter and particulates. Erosion along riverbanks and coastal erosion accelerated by melting permafrost
contribute old, previously unavailable Hg to ocean shelves.

shelves[31] we expect there to be, likewise, a large range in the
activity of methylation. There are no measurements with which
to assess the rate of production of MeHg in sediments, the fac-
tors that control its production, and the importance of sediment
sources for MeHg in benthic and pelagic biota.

Transformation and delivery of Hg from terrestrial
and freshwater systems
Large inflows to the Arctic Ocean from rivers brings organic
carbon and various forms of Hg including particulate, dissolved
and MeHg (Fig. 6). We know that the Mackenzie River deliv-
ers ∼2.2 t of Hg and 15 kg of MeHg to its estuary.[32] Likewise,
the Churchill and Nelson Rivers deliver ∼13 kg year−1 of MeHg
to Hudson Bay, a number that is far greater than that delivered
by direct snow melt.[33,34] The Mackenzie River is particle rich
and may, therefore, differ from other rivers in how it transports
Hg and in how accessible the Hg is to biota. The connections
between terrestrial and marine systems offer many opportuni-
ties for change in the movement of Hg and in its transformations,
especially given projections of permafrost melt-out and the
subsequent alteration of drainage basin hydrology and organic
productivity.[35] Where permafrost melts, soils may dry out or
inundate. The latter process leads to the release of Hg (e.g. see
Klaminder et al.[36]) as well as the creation of MeHg (St. Louis
et al.[37]). In particular, recently deposited Hg may be more sus-
ceptible to release and uptake by freshwater fish.[38] We presently
have very few measurements for these systems in the Arctic.

Transformations with the Arctic Ocean water column
Variability in MeHg concentration has been observed in Arctic
Ocean plankton,[24] but there are no published data on MeHg
distributions within the water column from which to infer source.
Recent findings in the Mediterranean Sea and Pacific Ocean
show that methylation can occur in the water column as part
of the detrital remineralisation process (Fig. 7).[39,40] Most of
the MeHg is produced during the regeneration process rather
than transported with the detritus.[39] The western Arctic Ocean
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Fig. 7. MeHg production can occur within the water column as part of
regeneration.[39,40] The Arctic Ocean haloclines, which contain nutrient
maxima, would be favoured locations for this process.

contains a pervasive cold, nutrient-rich halocline.This region has
the potential to harbour MeHg which has either been imported
from the Pacific Ocean, or produced within the Arctic as part of
the vigorous production and regeneration cycle over the Chukchi
Shelf.[31] There is a large inventory of HgII in the upper ocean of
the Arctic that would supply ample HgII to feed the methylation
engine.[11] We presently have no measurements from which we
could assess this pathway to produce MeHg.

Open questions for future research

The question we have posed here is how do processes operating in
within the Arctic (terrestrial and marine) define the vulnerability
of theArctic Ocean to mercury?This contrasts the overwhelming
recent interest in atmospheric deposition chemistry as the major
driver of marine food web exposure to mercury.

We describe four potential processes, about which we know
practically nothing, that lead to conversions between Hg0, HgII
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and the organic bioaccumulative neurotoxic form, MeHg. Lack
of knowledge of these processes severely limits our understand-
ing of what has been driving recent trends of Hg in biota and
predictions of future trends. In particular, future work needs to
resolve whether or not Hg recently deposited from the atmo-
sphere is especially prone to methylation and biological uptake in
marine systems as seems to be the case in freshwater systems.[38]

Accordingly, future research should focus on:

• Processes at the ice–ocean interface that permit the entry of
deposited Hg into food webs

• Methylation in sediments and subsequent entry into benthic
or pelagic food webs

• The importance of mercury and methylmercury inputs from
rivers and coastal erosion to marine food webs

• Production of MeHg within the Arctic Ocean’s water column.
• The removal of Hg from the surface of the interior Arctic

Ocean by vertical flux

Research along these lines is essential before realistic mod-
elling of Hg speciation, especially MeHg, and trophic level
transfers can be conducted for the Arctic.

Our lack of understanding of the mercury cycle as it impacts
food webs is now compounded by an Arctic undergoing rapid
change.[20] This change presents a new set of challenges to under-
standing mercury trends in biota and the underlying cause of
mercury exposure in high trophic levels. Accordingly, a second
set of questions is clearly relevant to future studies of mercury
in the Arctic, and we can propose several promising lines of
research. For example, how does the loss of ice affect air-sea
interaction, the balance between ice and pelagic food webs, the
connectivity of such food webs with benthos, the intensity of
primary production and regeneration, and how do hydrologi-
cal interactions in surface soil horizons affect the production of
MeHg? Where higher trophic level biota are involved, we could
ask another set of questions such as how do foraging strategy
and plasticity in diet affect exposure?[41,42] Most of these ques-
tions involve, directly or indirectly, an interaction between the
mercury cycle and the carbon cycle.

Is the Arctic especially vulnerable to global Hg emissions?
We conclude that the sensitivity of the Arctic Ocean’s ecosystem
to Hg lies not so much in the Arctic’s position in the global depo-
sition hierarchy but more in the methylation processes within the
Arctic and their vulnerability to climate change.
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