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Does toxicity test variability support bioavailability model 
predictions being within a factor of 2? 
Gwilym A. V. PriceA,B,* , Jenny L. StauberB,C, Sarah StoneA,B, Darren J. KoppelD, Aleicia HollandB,C and  
Dianne JolleyB

Environmental context. Having appropriate and robust models used for developing water quality guidelines is critical for sound 
environmental management. Methods used to validate models have only been demonstrated appropriate for a small portion of data 
types used in these models. This study has found that models using certain data types would be more appropriately validated using 
alternative evaluation criteria. This study serves as an important reference for developing and evaluating robust models.  

ABSTRACT 

Rationale. Bioavailability-based toxicity models for metals often have performance assessed by 
whether it can predict toxicity data within a factor of 2 of their paired observed toxicity data. 
This method has only been verified for median effect values (EC50) for acute fish and daphnia 
data, however toxicity models have been developed for a much broader range of effect levels 
(i.e. EC10/EC20) and species (e.g. microalga). This study tested whether the factor-of-2 rule is 
appropriate for a wider range of organisms and effect concentrations than previously studied. 
Methodology. Toxicity estimate data from repeated tests conducted under the same condi
tions were collated to assess variation in results and compare this variation to a range of 4 
(a factor of 2 above and below the mean) and a range of 9 (a factor of 3 above and below the 
mean) to assess if a factor-of-3 rule may be more appropriate for some species and effect levels. 
Results and discussion. Overall, the factor-of-2 rule is broadly applicable for metal toxicity 
to a range of species for EC50 data. The EC10 datasets highlighted that larger variability exists 
in low effect levels and supported the use of a factor-of-3 rule, while the either the factor-of-2 
or factor-of-3 rule could be applied to microalgae. The level of performance evaluation chosen 
may depend on the application of the bioavailability model. This study also found that while 
repeated toxicity test data is routinely generated, it is rarely published. Publication of such data 
would enable expansion of the present study to include inter-laboratory comparisons, an 
important consideration as most bioavailability models are based on data pooled from multiple 
sources.  

Keywords: bioavailability, biotic ligand model, ecotoxicology, metal toxicity, model predic
tions, model validation, reference toxicants, water quality. 

Introduction 

In the last several decades there has been increased development, use, and interest in 
incorporating metal bioavailability models into regulatory water quality guidelines/ 
criteria (Brix et al. 2020). Simple univariate regression models, such as the hardness- 
adjustment algorithm (USEPA 1985) have been used in water quality guidelines since the 
late 1980s. However, over the following decades more complex models, such as the biotic 
ligand model (BLM) (Di Toro et al. 2001) and multiple linear regression (MLR) models 
(Brix et al. 2017), which incorporate multiple water chemistry parameters have been 
developed to better predict metal toxicity to aquatic organisms. 

Recently, bioavailability models have been developed using low effect levels (e.g. data 
based on effect concentrations that cause a 10% (EC10) and/or 20% (EC20) effect) based 
on chronic toxicity data. These inherently have higher uncertainty than models based on 
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higher effect levels, such as EC50 values, as there is typically 
greater uncertainty at the EC10 and EC20 values in a 
concentration-response model. 

The increase in complexity, type and use of these models 
has resulted in a need for validation methods to test a 
model’s predictive capacity. Garman et al. (2020) outlined 
several methods of model performance evaluation, including 
regression slope bias analysis and whether model predictions 
are within a factor of 2 (i.e. range of 4) of the observed 
toxicity estimate (e.g. EC50). Use of the factor-of-2 rule was 
first proposed by Di Toro et al. (2001) and Santore et al. 
(2001), and was based on a single dataset using a 96-h acute 
lethality test on larval fathead minnows (Pimephales prome
las) exposed to copper (Erickson et al. 1996). 

Several recent papers have called for the need for further 
assessment of the among-test variability for tests conducted 
under the same conditions in order to determine if the 
factor-of-2 rule is widely applicable (Garman et al. 2020;  
Peters et al. 2021). This rule has been examined by two 
other studies. Santore and Ryan (2015) assessed variation in 
Daphnia magna zinc acute lethality tests, while Meyer et al. 
(2018) examined a larger toxicity dataset where D. magna 
neonates were exposed separately to cadmium, copper, 
nickel or zinc. Additionally, Meyer et al. (2018) reanalysed 
P. promelas data from Erickson et al. (1996). Both studies 
found that the factor-of-2 rule was generally applicable 
across the two species. 

No study has yet investigated the suitability of the factor- 
of-2 rule for microalga, despite several bioavailability mod
els being recently developed (DeForest et al. 2018; Croteau 
et al. 2021; Peters et al. 2021) nor for low effect levels or 
chronic toxicity data for any organism. Peters et al. (2018) 
suggested that a factor-of-3 rule (i.e. a range of 9) may be 
more appropriate for low effect level and chronic data given 
the inherent increased uncertainty associated with these. 
Assessing the suitability of validation techniques like the 
factor-of-2 rule for these types of toxicity data is important 
as they are often preferred over acute EC50 data for water 
quality guideline development (Batley et al. 2018). 

In this study, we report an analysis of the appropriateness 
of the factor-of-2 rule and the proposed factor-of-3 rule 
using an extensive collection of repeated toxicity datasets 
including freshwater and marine invertebrates and micro
algae. Acute and chronic data across a range of endpoints at 
low and high effect levels were assessed. The results of these 
analyses serve as an important reference point for develop
ing and evaluating bioavailability model performance. 

Methods 

Data sources 

Toxicity estimate data were taken from a previously 
unpublished internal quality control reference toxicant data
base comprised of standardised tests used to assess test 

repeatability and organism culture performance over time 
(CSIRO, unpubl. data). Test species consist of both fresh
water and marine organisms. Additional data was sourced 
from published reference toxicant data in Stone et al. (2022) 
and Meyer et al. (2018). 

Datasets were defined as having the same endpoint, test 
duration, test vessel, initial organism density (e.g. cell density 
for microalgae) and test water (laboratory prepared waters 
with the same chemical characteristics). A minimum of 
5 datapoints (i.e. ECx values) were required per dataset 
and only tests with measured concentrations were included. 
In total 29 datasets representing 12 species (including micro
algae, invertebrates, and fish), 547 toxicity tests, 3 contami
nants (copper (n = 21), nickel (n = 6) and zinc (n = 2)), 
acute (n = 11 datasets) and chronic (n = 18) endpoints, 
and EC10 (n = 7 datasets) and EC50 (n = 22 datasets) data 
were collated (Supplementary Table S1). 

Calculations and statistics 

All statistical analyses were performed using the statistical 
environment RStudio (version 1.1.423; RStudio Team 2020) 
with figures produced using the extension packages ggplot2 
(Wickham 2016) and ggpubr (Kassambara 2020). 

All data was tabulated into datasets to calculate means, 
standard deviations, and percentiles. Upper-lower prediction 
ratios (ULPRs) were used to assess toxicity dataset variability 
and were calculated as per Meyer et al. (2018) (Eqns 1, 2). 
Both 90- and 95%-ULPRs were calculated for each dataset 
using untransformed and log10-transformed data. For the 
log-transformations all toxicity estimates within a dataset 
were transformed prior to calculations as per Meyer et al. 
(2018). Percentiles were calculated as shown in Eqn 3, using 
the mean toxicity estimate within a dataset, the z-score of 
normal distribution (Z) and the standard deviation (σ) of the 
dataset. 

95% ULPR = 97.5th percentile
2.5th percentile

(1)     

90% ULPR = 95th percentile
5th percentile

(2)     

ZPercentile = mean ± ( × ) (3)  

Untransformed and transformed data were tested for normal
ity using the Shapiro–Wilk test. ULPRs were compared to a 
range of 4 and 9, which are the ranges of deviation from 
observed toxicity values that the factor-of-2 and factor-of-3 
rules suggest is a satisfactory fit for bioavailability models. 

Several of the lower percentile calculations (i.e. 2.5th 
and 5th) for the untransformed data were less than 0 and 
therefore ULPRs could not be calculated. Additionally, 
several untransformed datasets were not normally distrib
uted (P < 0.05). Therefore, for consistency log-transformed 
results were discussed in the present study as all log- 
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transformed results were normally distributed (except 
Ceriodaphnia dubia exposed to copper) and the transforma
tion negates the issues of negative values at lower percentile 
calculations. 

Applying a 95% prediction limit to assess toxicity varia
bility may be unrealistic when considering bioavailability 
models developed with data pooled from numerous studies, 
laboratories and timepoints. This is often the case with most 
models in the literature predicting far less than 95% of data 
within a factor of 2 (Besser et al. 2021; Brix et al. 2021;  
Santore et al. 2021), with Peters et al. (2021) suggesting a 
model be deemed acceptable if 50% of data lies within a 
factor of 2 and 90% within a factor of 3 for lower effect 
levels. Based on this, the present study will discuss the 
results in terms of a 90%-ULPR and results for 95%-ULPRs 
are provided in Supplementary Table S2 to serve as a direct 
comparison to other studies. 

Additionally, median, geomeans, coefficient of variation 
(CV) and maximum/minimum ratios (MMR) were calculated 
with all results provide in Supplementary Table S2. Significant 
differences between ULPRs was tested using the non- 
parametric unpaired Wilcoxon test following normality test
ing with the Shapiro–Wilk test. Standard deviation (s.d.) 
was used to specify variability (i.e. ±1 s.d.) and ULPRs are 
expressed as median (interquartile range) throughout. 

Results and discussion 

Across all datasets the range of 90- and 95%-ULPRs were 
1.6–12.7 (median: 3.2 (2.8–4.4)) and 1.7–20.6 (median: 3.9 
(3.1–5.8)), respectively. All calculations and results for both 
untransformed and log-transformed data are provided in 
Supplementary Table S2. 

EC10 versus EC50 

In general, the ULPRs for the EC10 data in the present study 
do not support the factor-of-2 rule but do support a factor- 
of-3 rule. The ULPRs for the EC50 data support the factor-of- 
2 and agree with the findings of Meyer et al. (2018). 

There were seven datasets based on EC10 values, which is 
much less than the 22 datasets based on EC50 values reflect
ing that EC50 values are more common acceptability criteria 
in reference toxicant testing (see examples in Stone et al. 
(2022) and Price et al. (2022)). The seven available EC10 
datasets were comprised of 92 toxicity tests across four 
species (two invertebrates and two microalgae) and two 
contaminants (copper and nickel) with both acute and 
chronic data (Supplementary Table S1). The median 90%- 
ULPR for all EC10 datasets was 5.6 (3.5–7.1) (Fig. 1). Of the 
seven datasets, only two had 90%-ULPRs <4 (complying 
with the factor-of-2 rule); however, six of the seven datasets 
had 90%-ULPRs <9 complying with the factor-of-3 rule as 
suggested by Peters et al. (2018). The one dataset that fell 

outside the factor-of-3 rule had a 90%-ULPRs of 12.7 for 
Chlorella sp. copper EC10 data. Meyer et al. (2018) reported 
similar increases in variability for Daphnia magna cadmium 
EC50 data, which was explained by age-related differences 
in cadmium sensitivity to D. magna neonates. However, this 
is unlikely the case for Chlorella sp. with this greater varia
bility likely to reflect Chlorella sp. being highly sensitive to 
copper with a median EC10 value of 0.5 µg Cu L−1, which is 
close to the instrument detection limits (inductively coupled 
plasma – atomic emission spectroscopy (ICP-AES)). 

For the EC50 data, 22 datasets comprising 455 toxicity 
tests across 12 species (invertebrates, microalgae and fish) 
and three contaminants (copper, nickel and zinc) were avail
able (Supplementary Table S1). In comparison to the EC10 
ULPRs, the EC50 ULPRs were lower and less variable 
(Fig. 1), with the median 90%-ULPR for all EC50 datasets 
being 3.2 (2.8–4.1) (Table 1). Of the 22 datasets, 18 datasets 
had 90%-ULPRs <4 and all 90%-ULPRs were <9. The 
ULPRs for the EC50 data in this study support the factor- 
of-2 rule and agree with the findings of Meyer et al. (2018). 

Several contaminant- and species-matched datasets were 
available, which allowed for the comparison of EC10 and 
EC50 variability from the same tests (i.e. EC10 and EC50 
values derived from the same concentration-response curve), 
rather than across all datasets. One matched dataset was 
available for a freshwater microalga, Chlorella sp., exposed 
to copper and three matched datasets were available for the 
marine copepod Acartia sinjiensis, exposed to copper (both 
acute and chronic) and nickel. 
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Fig. 1. Boxplots showing the 90% ULPRs for all EC10 and EC50 
datasets. Boxplots span the interquartile range, with median shown, 
whiskers are 1.5 × IQR. Dots show ULPRs for individual datasets. 
Dashed line indicates the factor-of-2 rule threshold of 4 and the 
dotted line indicates the factor-of-3 threshold of 9.   
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When comparing the Chlorella sp. copper matched EC10 
and EC50 ULPRs, the EC10 90%-ULPR was much larger, at 
12.7, while the EC50 90%-ULPR was 4.9. Larger EC10 
ULPRs compared to the matched EC50 ULPRs were also 
found in the A. sinjiensis data (Table 1). These matched 
comparisons provide further evidence to support comments 
of Peters et al. (2018) about larger EC10 variability, 
especially given these matched EC10 and EC50 values are 
estimates from the same concentration-response models. 

Chronic versus acute 

Comparing chronic datasets to acute datasets at both the 
EC10 and EC50 level did not result in any differences between 
ULPRs (Fig. 2). When considering all datasets, the 90%-ULPR 
for EC50 values was not significantly different between 
chronic and acute datasets (P = 0.08, z = 1.77). The overall 
median 90%-ULPR for the acute and chronic EC50 values was 
2.8 (2.4–3.1), and 3.3 (3.0–4.0), respectively. For the EC10 
values, there were limited datasets available for acute toxicity 
(n = 2); however, ULPRs were similar for both the acute and 
chronic datasets, as shown in Fig. 2. 

Only three datasets were available to compare contaminant- 
and species-matched acute and chronic ULPRs, with data 
available for the marine copepod A. sinjiensis and the marine 
urchin Heliocidaris tuberculata. A. sinjiensis acute and chronic 
copper EC50 ULPRs were similar, with acute and chronic EC50 
90%-ULPRs of 2.9 and 3.3, respectively. Matched acute and 
chronic EC50 ULPRs for H. tuberculata had similarly small 
differences between the two datasets, with acute and chronic 
EC50 90%-ULPRs of 2.8 and 4.0, respectively. The acute and 
chronic copper EC10 ULPRs for A. sinjiensis had a larger 
difference compared to the EC50 ranges above, with acute 
and chronic EC10 90%-ULPRs of 5.7 and 8.4, respectively. 

The comparisons with all datasets and the EC50 
contaminant- and species-matched datasets suggest that 

acute and chronic test variability are similar. In addition, 
the median values for the acute and chronic 90%-ULPRs 
were both <4, broadly suggesting that the data, regardless 
of whether it is chronic or acute, supports the factor-of-2 
rule. The EC10 contaminant- and species-matched datasets 
suggest differences may be present between acute and 
chronic EC10 data, as the chronic ULPR range is much larger 
than the acute range. However, this is likely related to the 
greater variability in EC10 data (discussed earlier), rather 
than specific differences between acute and chronic data. 
Furthermore, this variability is based on a single species and 
contaminant. More data would be useful to assess the differ
ences in variability at the EC10 level for matched acute and 
chronic data. 

Microalgae 

Of the 10 EC50 microalgal datasets, 5 were freshwater spe
cies and 5 were marine species (Supplementary Table S1). 
The median EC50 90%-ULPRs for the freshwater and marine 
species were 4.0 (3.8–4.4) and 2.9 (2.7–3.1), respectively. 
These were not significantly different (P = 0.095, z = 1.77), 
but the marine species did generally appear to have lower 
ULPRs (Supplementary Fig. S1). As freshwater microalgal 
species are the current focus of algae bioavailability model
ling, the discussion will focus on these results (DeForest et al. 
2020; Croteau et al. 2021). All data analysis and results for 

Table 1. The 90% upper-lower prediction ratios for all EC10 and 
EC50 datasets and for the contaminant- and species-matched datasets. 
All individual dataset upper-lower prediction ratios are provided in 
Supplementary Table S1. n = total datapoints in dataset.      

Dataset n 90%-ULPR 

Based on Based on 

EC10 EC50   

All data 93/455A 5.6 (3.5–7.1)B 3.2 (2.8–4.1)B 

Chlorella sp. (copper) 11 13 4.9 

Acartia sinjiensis 
(copper – acute) 

37 5.7 2.7 

Acartia sinjiensis 
(copper – chronic) 

5 8.4 3.4 

Acartia sinjiensis 
(nickel – chronic) 

9 2.8 1.4 

AEC10 datapoints/EC50 datapoints. 
BMedian (IQR).  
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Fig. 2. Boxplots comparing the acute and chronic 90% ULPRs for 
all EC10 and EC50 datasets. Boxplots span the interquartile range, 
with median shown, whiskers indicate the 1.5 × IQR. Dots show 
ULPRs for individual datasets. Dashed line indicates the factor-of-2 
rule threshold of 4 and the dotted line indicates the factor-of-3 
threshold of 9.   
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the marine species are provided in Supplementary Table S2, 
and the results were similar to the freshwater species. 

The 90%-ULPR for freshwater microalgal EC50 data ran
ged from 3.2 to 8.0, with a median value of 4.0 (3.8–4.4). 
Based on the median, the factor-of-2 rule may be suitable, 
with 3 of the 5 datasets with ULPRs <4, however a factor-of-3 
rule appears more applicable with all ULPRs <9. 

Comparing the freshwater microalgae and non-algal 
species ULPRs shows a small, yet significant difference 
(P = 0.027, z = 2.27), with non-algal species having a 
slightly lower median 90%-ULPR of 2.9 (2.4–3.3) compared 
to the 4.0 (3.8–4.4) for microalgae (Fig. 3). When comparing 
the microalgae ULPRs to other commonly used taxa for 
bioavailability modelling, such as daphnids and fish, the 
ULPRs for microalgae were similar. The only daphnid data
set in the present study was for C. dubia exposed to copper, 
which had a 90%-ULPR of 3.1. The D. magna data used in  
Meyer et al. (2018) had a median 90%-ULPR of 2.4 and 
P. promelas had a median 90%-ULPR of 3.5. In general, the 
microalgal test variability does not appear to be much larger 
than non-algal species. 

Recommendations 

Reference toxicant data is routinely generated during con
taminant toxicity studies, however the data is rarely pub
lished. Publication of such data would enable expansion of 
the present study to other organisms, contaminants and 

effect levels allowing for further assessment of validation 
techniques for bioavailability modelling. This would also 
allow for inter-laboratory comparisons which is important 
given most bioavailability models are developed using data 
from numerous sources. However, care is needed when 
making such comparisons as different laboratories do not 
necessarily use the same culture and/or testing media. 

Conclusions 

The data in the present study indicated that the factor-of-2 
rule is broadly applicable for metal toxicity to a range of 
species for EC50 data, generally agreeing with the previous 
analysis by Meyer et al. (2018). The EC10 data highlighted 
that larger variability exists in low effect levels and supported 
the use of the factor-of-3 rule as recommended by Peters et al. 
(2018). Overall, either the factor-of-2 or factor-of-3 rule could 
be applied to microalgal data and the rule chosen for model 
performance evaluation may depend on the application of the 
bioavailability model. Given that most bioavailability models 
are developed using data from numerous sources, future 
assessments of inter-laboratory variability for matched tests 
(i.e. the same species and conditions) would be valuable. 
However, this may be difficult as differences in sensitivities 
can arise from small changes in water chemistry between 
laboratories and strains of the same species. 

Supplementary material 

Supplementary material is available online. 
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