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Volatile organic compounds (VOCs) emitted from both natural
and anthropogenic sources play a significant role in the global

carbon budget and the regional ozone formation or destruction in
both the troposphere and stratosphere (Carpenter et al. 2012; Yu
and Li 2021). In addition, they can also serve as an important

source of secondary aerosols, further impacting the radiation
budget, precipitation and climate. Knowledge of emissions of
terrestrial VOCs, and their transformation to aerosols, has

advanced considerably over the past few decades, while the role
that the ocean plays in the global VOC budget and their con-
trolling processes remain unclear. Seawater contains an

extremely complex, diverse and largely unrecognised mix of
VOCs, which are directly or indirectly produced by bacteria,
phytoplankton and seaweeds, as well as by reactions involving
dissolved organicmatter (DOM). Themostwidely knownmarine

biogenic VOCs include dimethyl sulfide (DMS), halocarbons,
methane (CH4), nitrogen-containing gases and non-methane
hydrocarbons (NMHCs). These VOCs in the ocean are gener-

ally oversaturated relative to the atmosphere; thus the ocean is
considered to be a significant net source of atmospheric VOCs.

As the most abundant natural sulfur-containing gas in the

atmosphere, research on oceanic DMS had been conducted
extensively since the ‘CLAW’ hypothesis was proposed
(Charlson et al. 1987). Dimethyl sulfide can be oxidised in the

atmosphere and form sulfate aerosols, which play the largest role
inmitigation of global warming by both scattering solar radiation
and altering cloud condensation nuclei (CCN) and albedo
(Hoffmann et al. 2016). Recent studies have proven that CCN

over remote oceans and polar regions are primarily composed of
non-sea-salt sulfate (nss-SO4

2–) (Quinn et al. 2017; Park et al.
2021), although the identification of a new reservoir of marine

sulfur in the atmosphere may reduce the DMS contribution to
aerosol generation (Veres et al. 2020). Certain volatile halocar-
bons (e.g. iodinated halocarbons and several bromoalkanes)

released primarily from the ocean may cause ozone depletion
by producing atmospheric iodine and bromine radicals (Hossaini
et al. 2015). Some NMHCs with highly reactive groups (e.g.
carbon-carbon double bonds) readily participate in atmospheric

chemistry, thus contributing to the formation or destruction of
tropospheric ozone and the formation of secondary organic
aerosol (SOA, Griffin et al. 1999; Claeys et al. 2004).

Global measurements show a large range in seawater VOC
concentrations, which may be correlated with chlorophyll-a in

some cases, and are also affected by various environmental
parameters, such as temperature, light intensity and biological

activity (Yu and Li 2021). Accordingly, SOAs, formed by
oxidation of marine VOCs, exhibit clear spatial and seasonal
variations, and dominate aerosol chemical composition in the

submicron size range during high biological activity periods.
Coral reefs as a source of marine biogenic aerosols is an
emerging topic, and DMS can play a significant role in coral

ecophysiology (e.g. alleviation of oxidative stress and contribu-
tion to ‘thermostat’; Jackson et al. 2020). In addition, the impact
of ocean acidification on production of marine trace gases may

cause potentially large modifications of DMS and nitrous oxide
(N2O) fluxes (Hopkins et al. 2020). Quantifying the emissions of
CH4 and N2O from coastal wetlands is critical in the assessment
of natural ‘blue carbon’ sinks (Rosentreter et al. 2021).

This research front was proposed to address the limited
availability of survey data and knowledge gaps about marine
biogenic VOCs, and contains nine original research papers

focusing on the production, distribution and emissions of vari-
ous VOCs in marine environments and their contributions to
aerosols and correlations with marine biota. Zhang et al. (2021)

estimated the DMS sea-to-air flux across the Southern Ocean,
south-east Indian Ocean, and north-west Pacific Ocean, and
analysed the influence of DMS fluxes on sulfate aerosols. Wu

et al. (2021) conducted a comprehensive survey of DMS
distribution, production and transformation in the East China
Sea (ECS) during summer, including the measurements of DMS
and dimethylsulfoniopropionate (DMSP) in surface seawater,

DMSP in sediment pore water, and nss-SO4
2- and methanesulfo-

nate (MSA) in atmospheric aerosols. The production and micro-
bial consumption rates of DMS are also investigated through

incubation experiments. Han et al. (2021) conducted laboratory
incubation experiments ofUlva prolifera to examine the effects
of temperature and nutrients on its biogenic sulfur emissions

during the decline period. These survey and experimental results
provide useful information and improve our understanding of
oceanic DMS biogeochemistry and its impact on aerosol
properties.

He et al. (2021) investigated the concentrations and fluxes of
five methyl halides in the Yellow Sea and the ECS. The
influence of marine environmental factors on the sources of

these volatile halocarbonswas also examined. These results help
to reasonably assess the ocean contribution of halocarbons and
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understand their roles in ozone depletion and global climate

change. Liu et al. (2021a) investigated the photochemical
generation of bromophenols in the presence of DOM and
demonstrated that DOM enhances the photobromination reac-

tion. The result indicates that the bromination process induced
by sunlit DOM contributes to the natural sources of organobro-
mine compounds in marine environment.

Li et al. (2021) investigated the horizontal and vertical

profiles of 10 NMHCs along with phytoplankton biomass and
species in the ECS and examined the roles of phytoplankton
assemblages in the occurrence and emissions of NMHCs. This

study provides a better understanding of the biogeochemical
cycling of NMHCs in marine systems. Liu et al. (2021b)
investigated dissolved CH4, N2O and other hydrological para-

meters over tidal cycles in Golden Bay mangrove ecosystem
from 2019 to 2021. The survey data has improved our under-
standing of fluxes of greenhouse gases in mangroves and
assessment of ‘blue carbon’ sinks.

Xu et al. (2021) characterised the concentrations, size dis-
tributions and chemical pathways of aerosol aminiums over a
coastal city and marginal seas, and estimated the contribution of

marine biogenic sources. This study can facilitate our under-
standing about the interactions between human activities, bio-
genic emissions and the atmospheric environment. Wang et al.

(2021) conducted a time-resolved observational study on the
mass concentrations of gaseous and particulate ions to help
explore the formation pathways and forms of secondary aerosols

in Southern Ocean in summer. The study enriches the back-
ground data and illuminates the formation mechanism of sec-
ondary aerosols in the Southern Ocean, and provides the
theoretical support for understanding global climate change.
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