
Environmental Chemistry environmental problems • chemical approaches

CONTENTS

149

Cover

Extremophiles are organisms that thrive in extreme conditions, e.g. low pH, high salinity, high temperature. The chemistry of how these organisms survive is the focus of this Research Front, pp. 75–110.

Cover photograph: Devil's Kitchen, USA, taken by Dr Steve Boyer © 2006.

Vehicle exhaust, wood smoke and cigarette tar have all been linked to increases in respiratory diseases and lung cancer. Valavanidis et al. (pp. 118-123) report that such airborne particulate matter contains quinones and quinoid radicals. These species can generate reactive oxygen species that damage cellular proteins and DNA.

RESEARCH FRONT

Extremophiles

FSSAY

S. F. Kan, P. A. Tanner

Extremophiles: There's More to Life P. Hendry	75
REVIEW Life on Earth. Extremophiles Continue to Move the Goal Posts <i>A. A. H. Pakchung, P. J. L. Simpson, R. Codd</i>	77
HIGHLIGHT Osmoregulation in Bacteria: Compatible Solute Accumulation and Osmosensing <i>H. J. Kunte</i>	94
RAPID COMMUNICATIONS Extraction of DNA from Acidic, Hydrothermally Modified Volcanic Soils <i>R. M. Henneberger, M. R. Walter, R. P. Anitori</i>	100
Mycosporines in Extremophilic Fungi—Novel Complementary Osmolytes? T. Kogej, C. Gostinčar, M. Volkmann, A. A. Gorbushina, N. Gunde-Cimerman	105
RESEARCH PAPERS Effect of Cosolvents on Toxaphene Aqueous Solubility <i>P. Paan, X. Chen, C. J. Clark II</i>	111
Determination of Selective Quinones and Quinoid Radicals in Airborne Particulate Matter and Vehicular Exhaust Particles <i>A. Valavanidis, K. Fiotakis, T. Vlahogianni, V. Papadimitriou, V. Pantikaki</i>	118
Sorption of a Xenobiotic Contaminant in Clean and Petroleum-Contaminated Soil: Roles of Water and Xenobiotic Size <i>T. R. Todoruk, C. H. Langford</i>	124
Reduction of Arsenates by Humic Materials N. E. Palmer, J. H. Freudenthal, R. von Wandruszka	131
Arsenic Speciation: Reduction of Arsenic(v) to Arsenic(III) by Fulvic Acid <i>T. Tongesayi, R. B. Smart</i>	137
In-Cloud Concentrations and Below-Cloud Scavenging Processes in Hong Kong, China P. A. Tanner, C. W. F. Tam	142
Water-Soluble and Total Sulfur in Particulate Matter Determined by Inductively Coupled Plasma Dynamic Reaction Cell Mass Spectrometry (ICP-DRC-MS)	

EARLY ALERT Sign-up at www.publish.csiro.au/journals/env for our electronic early alert and receive the next table of contents weeks in advance of the print version.