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INTRODUCTION 
  

Characterizing seismic velocities in reservoirs with 

heterogeneous (‘patchy’) fluid distributions is difficult and the 

effect of changing saturation is not well understood. The 

effects of patchy saturation can be a significant issue when 

encountered during reservoir monitoring or exploration, 

because not knowing the velocity – saturation relationship can 

potentially lead to false assumptions about the contents of the 

reservoir.   

 

Gassmann (1951) developed an equation describing the 

seismic velocity of a rock saturated with a single fluid.  Reuss 

(1929) and Voigt (1910) averages have been used (White 

1975) to define bounds on the relationship and the Reuss 

average has been thought to apply to most low frequency 

seismic, cases.  Domenico (1976) was the first to suggest that 

the heterogeneity of the fluid distribution in a rock might 

affect its seismic velocity and suggested the Voigt average 

effective fluid.  Mavko and Mukerji (1998) suggested the Hill 

(1963) average could apply to saturation patches for 

sufficiently low frequencies; this is known as the patchy 

curve.  Velocity trends at higher frequencies have been 

observed to transition between bounds and sometimes follow 

the upper bounds (Lebedev, et al. 2009, Mavko and Mukerji 

1998).  These examples highlight the uncertainty involved in 

characterising and predicting the velocity-saturation trend for 

a given scenario. Various authors (Akbar, et al. 1994, Mavko 

and Mukerji 1998, White 1975) have suggested critical 

heterogeneity scales based on pore scale flow.  They suggest 

this patch scale is the critical factor in determining whether the 

velocities tend to follow the patchy bound or the lower 

(uniform) bound.  Some authors have discussed possible 

intermediate curves to span the space (e.g. Brie, et al. (1995)), 

but they have not had great success as they are empirical, 

qualitative and thus have limited predictive capability. 

 

At higher frequencies faster velocities are observed (Cadoret, 

et al. 1995) including velocities above the patchy bound at low 

gas saturations (Mavko and Mukerji 1998).  These velocities 

are attributed to Biot (1956) and squirt dispersion (O'Connell 

and Budiansky 1977); mechanisms that involve wave-coupled 

fluid flow at the pore scale.  However, we show that these 

effects can be explained by complex elastic wave multi-

pathing. 

 

Recent simulations have focused on poroelastic models.  

These models include pore fluid flow which makes them more 

computationally expensive and has limited them to smaller, 

less complex scenarios.  The parameters for poroelastic flow 

(such as pore-space tortuosity,) are often difficult to obtain in 

practice, which limits the usefulness of this type of modelling. 

 

In this project we modelled heterogeneous spatial fluid 

distributions using elastic models with no pore fluid flow to 

determine the extent to which this type of modelling can 

accurately reproduce experimentally observed behaviour.  We 

have modelled plane waves with three different frequencies to 

examine the interaction between the fluid heterogeneity and 

wavelength spatial scales. 

 

During the project we found that elastic modelling was able 

qualitatively reproduce the expected behaviour, without the 

need to include pore fluid flow effects.  We also found that to 

fully describe the range of behaviour observed experimentally, 

in addition to saturation, frequency and patch size we required 

a new parameter to describe the smoothness of the patches.  

SUMMARY 
 

The effect of single-phase fluid saturation on a rock’s 

bulk modulus is well understood using Gassmann’s 

equation.  However when multiple fluids are involved the 

behaviour is not as well understood.  Several fluid mixing 

averages have been suggested (Voigt, Reuss, Hill), and 

each apply in certain situations, however it is often not 

clear which model to select in a specific scenario and in 

some scenarios none of the models are accurate.  The 

critical factor in deciding which average to use depends 

on the way the fluids are spatially distributed within the 

rock.  We have applied elastic finite difference 

computational modelling to many different fluid 

distribution scenarios and have replicated behaviour 

described by various theoretical, empirical and lab data 

results, as well as generating results that span the space 

between these models.  Importantly, our results compare 

well with observations in lab experiments, without 

relying on poroelastic or squirt-flow models which 

require parameters that are difficult to estimate for real 

reservoirs.  Our elastic scattering approach is less 

computationally expensive than poroelastic modelling 

and can be more easily applied to actual reservoir rock 

and fluid distributions.  Our results provide us with a 

powerful new method to analyse and predict the effects 

of multiple fluids and ‘patchy’ saturation on saturated 

rock bulk moduli and velocity.  They also challenge 

traditional assumptions about the controlling factors on 

saturated bulk moduli suggesting it is more dominantly 

affected by the spatial fluid distribution properties rather 

than pore-scale fluid flow effects. 
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We found elastic modelling is sufficient to model the effect of 

partial fluid saturation, but it requires two parameters to 

describe the heterogeneity of the fluid distribution.  The two 

parameters are the scale of the heterogeneity, (i.e. the patch 

size,) and the scale of the smoothness (a measure of the 

amount of mixing). 

 

INITIAL MODELLING RESULTS 

 
The initial modelling process consisted of generating two 

dimensional velocity and density maps of a rock cross-section, 

simulating the propagation of an elastic plane wave using a 

finite difference approximation and calculating the travel 

times from the output signal.  Binary maps of the cross-section 

were generated with every point being either water or gas 

saturated.  The points formed patches saturated with each type 

of fluid and a known average radius.  Properties were then 

assigned to each point from a distribution based on whether it 

was water or gas saturated.  P-wave velocity, S-wave velocity 

and density models were then calculated based on these maps, 

using Gassmann’s equation.  An example of a P-wave velocity 

model is shown in Figure 1, the red regions are gas saturated 

and the blue regions are water saturated.  We then 

computationally simulated the propagation of a plane wave 

through these models using the finite difference 

approximation.  The output traces along the central 80% of the 

model were stacked to simulate the lab experiment and avoid 

edge effects, and the arrival times were picked from these 

traces. 

 

 
 

Figure 1. One of the velocity models used in the initial 

modelling.  This model represents a cross-section of a 

reservoir rock 50% gas saturated and 50% water 

saturated. 

 

From these arrival times the velocities were calculated and the 

results are shown in Figure 2.  The top curve is the Voigt 

bound, the bottom curve is the Reuss bound and the middle 

curve is the patchy curve.  The three different symbols 

represent the three different frequencies of the plane waves 

that were modelled.  The results from this set of models are 

the dark blue points labelled as ‘0 –’ on the legend. The 

decreasing frequency did decrease the velocities from the 

Voigt bound to the patchy bound, but they did not drop below 

the patchy bound, no matter how low the frequency.  These 

models are very discrete so to try and extend the behaviour to 

simulate further mixing of the fluids we smoothed the 

saturation models. 

 

FLUID MIXING RESULTS 

 

We smoothed the models over three different scales, one 

where the smoothing scale was smaller than the average patch 

size, one where it was slightly larger and one where it was 

much larger. Two of the smoothed 50% gas saturation maps 

are shown in Figure 3 and Figure 4 with the red regions gas 

saturated and the blue regions water saturated.  The model  in 

Figure 3 is smoothed over a scale smaller than the patch size 

and the model in Figure 4 is smoothed over a scale 

significantly larger than the patches.  For each of these models 

the properties and velocities were calculated at each point, at 

points with partial saturations the fluid bulk modulus was 

calculated as a harmonic average and the density as an 

arithmetic average.  We simulated plane wave propagation 

through the velocity and density models for these three new 

distributions and picked the arrival times. 
 

 
 

Figure 3. A smoothed version of 50% gas saturation map 

with the smoothing range smaller than the patch size. 
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Figure 4. A smoothed version of 50% gas saturation map 

with the smoothing range significantly larger than the 

patch size. 

 

These results are also shown in Figure 2 with the colours 

progressing from blue to red represent increasing amounts of 

smoothing.  In the legend the first number for each series is 

the half width of the smoothing triangle and the second 

number is the frequency of the input plane wave.  The arrivals 

were picked when the signals reached 0.2% of the maximum 

amplitude and these arrivals were calibrated using the 0% and 

100% gas saturated models.  The results from the smoothed 

models quickly dropped below the patchy bound. 

 

ANALYSIS 

 
The first observation we made is that regardless of whether the 

distribution of fluids is ‘patchy’ or not, if the fluids are 

modelled as a set of discrete, 100% gas saturated and 100% 

water saturated points then the velocity never drops below the 

patchy curve.  Decreasing the frequency of the input wave for 

these models moved the velocity from the Voigt bound down 

toward the patchy curve. 

 

By implementing increased amounts of smoothing we 

generated three sets of data points for each frequency that 

seem to describe curves that move towards the Reuss bound.  

Changing the wave frequency still had an effect on the 

smoothed models, but the magnitude of the effect decreased as 

the smoothing range increased.  This behaviour is consistent 

with an increasingly smoothed model limiting to a constant 

model in which frequency would have no effect. 

 

By varying the two ratios of wavelength to patch size and 

smoothing scale to patch size we could generate velocity-

saturation curves that span the space between the Voigt and 

Reusss curves.  This suggests method we have developed 

could be used to predict the velocity-saturation curve for any 

reservoir (containing a heterogeneous fluid mixture) based on 

its smoothing scale and input wavelength as a fraction of the 

average fluid patch size. 

 

CONCLUSIONS 
 

Previous modelling of patchy saturation has concentrated on 

full poroelastic modelling.  However by using elastic 

scattering modelling we were able to reproduce the Voigt and 

patchy curves by varying the ratio of the input wavelength to 

the discrete fluid patch sizes.  Using smooth fluid saturation 

models to model mixing we were able to produce a family of 

curves that trend from the Voigt bound towards the Reuss 

bound.  This suggests that pure elastic scattering (not 

poroelastic squirt flow) is the dominant cause of the behaviour 

observed in laboratory experiments. 

 

We also found the discreteness or smoothness of the fluid 

patches was a critical factor in determining the measured 

velocity; this is a result that we have not yet seen discussed in 

the literature.  It suggests the extent to which two fluids mix in 

a patchy distribution is a very important factor in determining 

seismic velocities, with the smoothing scale measured as a 

fraction of the patch size. 
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Figure 2.  The velocities measured in this study.  The first number for each series in the legend describes the amount of 

smoothing that was applied to the velocity model; the second number is the central frequency of the input plane wave.  The 

dashed lines are the three theoretical bounds. 

 


