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INTRODUCTION 
 

Surface impedance measurements have been used for many 

decades in geophysical surveying to map subsurface features 

of the earth. Initially the method was referred to as the 

Magnetotelluric Method (MT).  It was developed during the 

1950’s as an electromagnetic geophysical method of imaging 

the earth’s subsurface by measuring natural variations of 

electrical and magnetic fields at the earth’s surface (Cagniard, 

1953). 

 

The earth’s time-varying magnetic field is generated by both 

naturally occurring radiation sources, which include the 

Magnetotelluric Method (MT) and its variant, the 

Audiomagnetotelluric Method (AMT), and artificial sources 

which include Controlled Source Electromagnetic (CSEM), 

Very Low Frequency (VLF) and other radio sources. 

 

Given the complexities of the earth’s subsurface including 

horizontal layering, vertical faults, dislocations and folded 

structures, the forward modelling problem using analytical 

methods is limited to a few idealized cases (Porstendorfer, 

1975). 

 

The two-dimensional impedance method (James, 1999 and 

Thiel, 2001) was derived to solve quasi-static electromagnetic 

and radiation problems.  The solution space is discretized into 

cells and using an impedance element at each edge to 

represent the size of the cell and the electromagnetic 

properties of the material enclosed.  The current in each 

impedance element is calculated via matrix inversion. 

 

Due to matrix sparsity and very large matrix dimensions, an 

iterative solver has been implemented for the matrix system 

solution.  One of the challenges is that iterative solvers often 

fail to converge and at low frequencies the resulting matrix 

can be very ill conditioned.  For that reason a preconditioning 

technique has been implemented in order to improve the 

speed, size and convergence of the solution (Saad, 2003). 

 

ELECTROMAGNETIC SURFACE IMPEDANCE 

 
Surface impedance measurements constitute a large part of 

frequency-domain techniques used in electromagnetic 

geophysics. In particular the Magnetotelluric (MT) (Cagniard, 

1953) method use a simple expression to relate the apparent 

resistivity ρa to the surface impedance Zs defined by 
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where ω is the angular frequency of the radiation, µ is the 

magnetic permeability of the earth, and Zs is the surface 

impedance defined as the ratio of the horizontal electric field 

component Ex measured on the surface of the earth and the 

horizontal magnetic field Hy, measured perpendicular to the 

electric field component (Wait, 1970).  The magnetic field is 

the primary field and the energy source, while the horizontal 

electric field is the secondary reradiation from the earth. Thus 
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where σ is the conductivity and ε is the permittivity.  The 

surface impedance is a complex number, as the phase 

relationship between the two fields components will vary.  If 

the earth is uniform and has a relatively high conductivity, 

then the phase of Zs is 45°.  If the earth is horizontally layered, 

then the surface impedance given by (2) is modified by a 

factor Q (Wait, 1970) defined as 

 

 1sZ Q Z=  (3) 

 

where Z1 is the intrinsic impedance of the upper layer and 

SUMMARY 
 

The two-dimensional impedance method is used to 

calculate the electromagnetic surface impedance above 

subsurface structures at very low frequencies (VLF).  The 

method was derived from Faraday’s and Ampere’s Laws 

and results in a single matrix equation where the right 

hand side corresponds to the source field introduced into 

the model as a fixed magnetic value.  The left hand side 

corresponds to the impedance matrix determined by 

discretizing the solution space into pixels bounded by 

lumped impedance elements with values determined by 

the electromagnetic properties of the local media.  Due to 

matrix sparsity and very large matrix dimensions, an 

iterative solver with a preconditioning technique was 

used to improve the speed, size and convergence of the 

solution.  The improved method has been applied to the 

analysis of a coal seam with various structural anomalies 

and line of oxidation (LOX) along a line defined by 500m 

with 0.5m resolution.  This paper reports a number of 

likely coal-seam scenarios relevant to surface mining 

operations. 
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where Z2 is the surface impedance of the lower half-space, u1 

is the complex propagation coefficient for the top layer in the 

vertical direction, γ0 is the free-space propagation coefficient, 

γ1 is the propagation coefficient in the first layer, φ is the angle 

of incidence measured with respect to the surface normal and 

h is the depth of the upper layer. 

 

The factor Q is dependent on the depth of the layer h and the 

conductivity of both media.  The propagation coefficients are 

determined by 

 

 2

n n n n njγ ω µ ε ωµ σ= −  (6) 

 

where µn, εn and σn are the permeability, permittivity and 

conductivity of layer n, respectively. 

 

Based on this theory, VLF surface-impedance measurements 

have been used successfully to map the conductivity structure 

of the upper parts of the earth’s subsurface, however, given its 

complexities including dislocations, folded structures, etc., the 

forward modelling problem using the analytical method is 

limited to few cases (Porstendorfer, 1975).  The impedance 

method is implemented in order to analyse very large and 

complex problems. 

 

THE IMPEDANCE METHOD 

 
The impedance method requires the solution space to be 

discretized into two-dimensional rectangular cells (pixels or 

voxels) bounded by impedance elements with properties 

dependent on the local electromagnetic properties of the 

medium and the cell size (James, 1999 and Thiel, 2001).  In 

the formulation, the magnetic field is assumed to be known at 

the source and calculated throughout the solution space. 

Figure 1 shows an inhomogeneous model where an applied 

magnetic flux induces cell current in each enclosed area. 

 

 
 

Figure 1.  Discretization of the inhomogeneous 2-D 

solution space and detail of the cell bounded by an 

impedance element. 

From Figure 1, Ii,k is the circulating current in the (i,k)th cell 

and can be determined in terms of the four adjacent cells.  The 

impedance of the (i,k)th element can be defined as 
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where σik and εik are the conductivity and permittivity, 

respectively, of the material located in the (i,k)th cell, ∆zi,k is 

the height of the first element and ∆y is a constant width 

assigned to all elements throughout the solution space required 

by the 2-D formulation. 

 

Using a combination of Ampere’s Law, Faraday’s Law and 

Kirchoff’s Laws, the magnetic field Hi,k, in each element, can 

be calculated using the matrix equation 
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where H is the vector of unknown magnetic field elements, H0 

is the known source field vector (in general the number of 

non-zero elements in H0 will be small), N is the number of 

impedance elements in the solution space matrix and S is a 

sparse, square, matrix of size N2, which, although 

dimensionless, represents the electrical properties and the 

physical dimensions of the pixels in the solution space. 

 

The solution matrix SN×N is given in terms of the complex 

propagation coefficient γik in the (i,k)th which is defined as 
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Once the solution vector H from equation (8) has been 

determined, the surface impedance Zs can be calculated from 

equation (2) as the ratio of the electric and magnetic fields at 

the surface of the earth modelled with an upper air layer 

(Thiel, 2001). Thus we can write 
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where Z1ik can be determined by equation (7).  The same 

approach can be applied to the three remaining sides of the 

(i,k)th cell. 

 

The formulation has been previously verified by comparison 

with the exact analytical solutions for a uniform half space and 

a horizontally layered half space and a vertical discontinuity 

(Thiel, 2001). 

 

ITERATIVE SOLUTION WITH 

PRECONDITIONING 
 

Krylov subspace methods are very useful for solving large 

systems of linear equations.  In this paper we implement the 

GMRES (General Minimum Residual) method which 

approximates the solution by a guess vector in a Krylov 

subspace with minimal residual, where Arnoldi iteration is 

used to find the solution vector (Saad, 2003). 

 

GMRES offers advantages in terms of speed and storage over 

other iterative solvers.  The method requires only one matrix-

vector product per step, and its residual error decreases 

monotonically, so it does not present any oscillation. 
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The convergence rate of GMRES is strongly related to the 

condition number of the linear system, at low frequencies the 

resulting matrix can be very ill conditioned.  Hence, a 

preconditioning technique is necessary to improve the speed, 

size and convergence of the solution (Espinosa, 2006). 

 

Preconditioning transforms the original linear system Ax b=  

into an equivalent one which is easier to solve by GMRES.  A 

preconditioner M of a matrix A of size N×N coefficients is a 

matrix such that M-1A has a smaller condition number than A. 

Three general types of preconditioning can be implemented 

(left, right and split).  For our purposes we use the left 

preconditioned system given by 1 1 M A x M b− −=  where M−1 is 

chosen to improve the condition of the system and is "cheap" 

(computationally fast) to be computed and applied inside 

GMRES.  M−1 should in some sense approximate the inverse 

of A. 

 

Various preconditioning techniques such as Jacobi, SOR and 

SSOR, are well detailed in (Saad, 2003).  One of the most 

popular is the Incomplete LU factorisation.  The ILU can be 

achieved by setting values below a given threshold (drop 

tolerance) τ to zero, in this case, the ILU yields a sparse unit 

lower triangular N×N matrix L and a sparse upper triangular 

N×N matrix U, returned in the lower and upper triangular 

parts of the matrix LU. 

 

In this paper we implemented the row-sum modified 

incomplete LU factorization (MILU) with pivoting (Benzi, 

2002).  Like ordinary ILU, MILU computes lower triangular L 

and upper triangular U by Gaussian elimination on the input 

matrix A, dropping some of the entries of L and U to keep 

them sparse.  However, when MILU drops an element of 

either L or U, it compensates by adding the value of the 

dropped element to the diagonal of U in the same row 

providing higher accuracy in the solution.  Once the modified 

ILU factorisation has been computed, it is applied with every 

step of the GMRES algorithm. 

 

NUMERICAL EXPERIMENTS 
 

Figure 2 shows a 2-D model which consists of a region 

defined by 500m length and 125m depth with 0.5m cell 

resolution in x and z direction, 1m upper air layer and host 

rock parameters defined by σ = 10-2 S/m (conductivity) and     

ε = 15ε0 F/m (permittivity).  Various structural anomalies in 

the model include a line of oxidation (LOX) of size 5m×10m 

at 10m depth with σ = 5×10-3 S/m and ε = 10ε0 F/m, three coal 

seams of sizes 2m×190m, 2m×100m and 2m×120m at 13m, 

14m and 15m depth, respectively, with σ = 10-3 S/m and          

ε = 3ε0 F/m, and a vertical basalt intrusion extended from the 

upper air layer to the bottom layer, 10m×124m, with σ=3×10-2 

S/m and ε = 10ε0 F/m.  The model is analysed at frequencies    

f = 19.8 kHz (VLF at North West Cape, Western Australia) 

and f = 4 kHz (frequency component where most energy has 

been found in the earth-ionosphere waveguide some distance 

from a lightning stroke, Thiel, 1988). 

 

A comparison between the analytical solution with that 

obtained from the impedance method was performed for both 

frequencies considering the coal region limited by 150m to 

170m in Figure 2 refered to as “Validation Area”.  The 

magnitude of the surface impedance compared with the 

analytical solution showed a very good agreement providing 

relative errors of 0.84% at 19.8kHz and 2.08% at 4kHz. 

 

 
 

Figure 2.  Two-dimensional region of 500m length and 

125m depth with 0.5m cell resolution, various structural 

anomalies, LOX and a basalt intrusion. 

 

The matrix SN×N to be solved has dimensions 250,000 × 

250,000 and size 25MB.  The computations were performed 

on an Intel Core i5 @ 3.20GHz PC with 4GB of RAM.  For 

each frequency, the sparse matrix SN×N was computed in 

75sec.  For the solution of the linear system of equation (8), a 

drop tolerance of 10-3 for the modified incomplete LU 

factorization and a tolerance of 10-6 for the GMRES were 

used.  The linear system was solved in 50sec with a relative 

residual of 10-8. 

 

Figure 3 shows the surface impedance (real, imag and 

magnitude) for each frequency while Figure 4 shows the phase 

of the surface impedance.  The apparent resistivity is 

computed in Figure 5 for each frequency and it is determined 

by equation (1). 

 

In Figures 3, 4 and 5, the LOX, basalt intrusion and the step 

dislocation are clearly evident in the surface impedance data at 

both frequencies. 

 

The phase in Figure 4 is approximately 53° on the basalt 

intrusion at 19.8kHz and 50° at 4kHz.  This implies that in this 

area the VLF signal is attenuated in the uppermost layer.  For 

the LOX and coal areas the phase remains constant around 

45°.  From Figure 5, the apparent resistivity approaches zero 

in the basalt intrusion because of its high conductivity.  The 

system proved to be slightly more resistive for the lower 

frequency f = 4kHz. 
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Figure 3.  Surface impedance for a two-dimensional 

solution space of 500m length and 125m depth at 

frequencies (a) 19.8kHz and (b) 4kHz. 
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Figure 4.  Surface impedance phase (degrees) for a two-

dimensional solution space of 500m length and 125m depth 

at frequencies 19.8kHz and 4kHz. 
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Figure 5.  Apparent resistivity for a two-dimensional 

solution space of 500m length and 125m depth at 

frequencies 19.8kHz and 4kHz. 

 

CONCLUSIONS 
 

The impedance method enables the forward modelling of 

surface impedance profiles that satisfies surface impedance 

theory for horizontally layered sub-surface structures at very 

low frequencies (VLF).  In the self-consistent formulation 

only the source field is known and the total magnetic field 

throughout the solution space is calculated.  From this the 

distribution of the current and the electric field can be 

determined.  The formulation allows for flexible cell size and 

shape, and for the ability to handle anisotropy. 

 

The Impedance Method has the advantages of being 

conceptually simple and computationally efficient, since the 

matrix involved is square, symmetrical and sparse (tridiagonal 

with two off-side bands). 

 

The implementation of the GMRES iterative solver and the 

MILU preconditioner allows for the analysis of very large and 

complex structures solving the matrix system in a reduced 

time producing a small relative residual, thus making the 

method a very efficient tool for realistic problems. 
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